PERFORMANCES OF MODIFIED POWER DIVERGENCE ESTIMATORS IN THE NORMAL MODELS : SIMULATION AND COMPARATIVE STUDY
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00199565" target="_blank" >RIV/68407700:21340/12:00199565 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PERFORMANCES OF MODIFIED POWER DIVERGENCE ESTIMATORS IN THE NORMAL MODELS : SIMULATION AND COMPARATIVE STUDY
Popis výsledku v původním jazyce
The main interest of our research was to examine these modifications in practical use as to the consistency, robustness and efficiency of the estimators. We focus on the well known family of power divergences parametrized by ff alpha in R in the normal distribution model. First we study the robustness by theoretical means deriving the influence functions and asymptotic variances, then we present the results of extensive computer simulation study for several randomly selected contaminated and uncontaminated data sets, and we study the behavior of estimators for different sample sizes and different -divergence parameters. According to our results, the superdivergence estimators are not very interesting for detailed scrutiny and we focus on the subdivergence estimators which show a considerable robustness. Finally we compare these estimators with other, mostly robust to some extent, estimators such as median, median absolute deviation, minimum Kolmogorov distance estimators, minimum power
Název v anglickém jazyce
PERFORMANCES OF MODIFIED POWER DIVERGENCE ESTIMATORS IN THE NORMAL MODELS : SIMULATION AND COMPARATIVE STUDY
Popis výsledku anglicky
The main interest of our research was to examine these modifications in practical use as to the consistency, robustness and efficiency of the estimators. We focus on the well known family of power divergences parametrized by ff alpha in R in the normal distribution model. First we study the robustness by theoretical means deriving the influence functions and asymptotic variances, then we present the results of extensive computer simulation study for several randomly selected contaminated and uncontaminated data sets, and we study the behavior of estimators for different sample sizes and different -divergence parameters. According to our results, the superdivergence estimators are not very interesting for detailed scrutiny and we focus on the subdivergence estimators which show a considerable robustness. Finally we compare these estimators with other, mostly robust to some extent, estimators such as median, median absolute deviation, minimum Kolmogorov distance estimators, minimum power
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LG12020" target="_blank" >LG12020: Využití pokročilé statistické analýzy a nestatistických separačních metod pro detekování fyzikálních procesů v datech snímaných urychlovači elementárních částic.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů