Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the pseudospectrum of the harmonic oscillator with imaginary cubic potential

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00235404" target="_blank" >RIV/68407700:21340/15:00235404 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61389005:_____/15:00450506

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s10773-015-2530-5" target="_blank" >http://dx.doi.org/10.1007/s10773-015-2530-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10773-015-2530-5" target="_blank" >10.1007/s10773-015-2530-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the pseudospectrum of the harmonic oscillator with imaginary cubic potential

  • Popis výsledku v původním jazyce

    We study the Schrödinger operator with a potential given by the sum of the potentials for harmonic oscillator and imaginary cubic oscillator and we focus on its pseudospectral properties. A summary of known results about the operator and its spectrum isprovided and the importance of examining its pseudospectrum as well is emphasized. This is achieved by employing scaling techniques and treating the operator using semiclassical methods. The existence of pseudoeigenvalues very far from the spectrum is proven, and as a consequence, the spectrum of the operator is unstable with respect to small perturbations and the operator cannot be similar to a self-adjoint operator via a bounded and boundedly invertible transformation. It is shown that its eigenfunctions form a complete set in the Hilbert space of square-integrable functions; however, they do not form a Schauder basis.

  • Název v anglickém jazyce

    On the pseudospectrum of the harmonic oscillator with imaginary cubic potential

  • Popis výsledku anglicky

    We study the Schrödinger operator with a potential given by the sum of the potentials for harmonic oscillator and imaginary cubic oscillator and we focus on its pseudospectral properties. A summary of known results about the operator and its spectrum isprovided and the importance of examining its pseudospectrum as well is emphasized. This is achieved by employing scaling techniques and treating the operator using semiclassical methods. The existence of pseudoeigenvalues very far from the spectrum is proven, and as a consequence, the spectrum of the operator is unstable with respect to small perturbations and the operator cannot be similar to a self-adjoint operator via a bounded and boundedly invertible transformation. It is shown that its eigenfunctions form a complete set in the Hilbert space of square-integrable functions; however, they do not form a Schauder basis.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorózní metody v kvantové dynamice: geometrie a magnetická pole</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Theoretical Physics

  • ISSN

    0020-7748

  • e-ISSN

  • Svazek periodika

    54

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    4142-4153

  • Kód UT WoS článku

    000362889400027

  • EID výsledku v databázi Scopus