Percolation assisted excitation transport in discrete-time quantum walks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00300542" target="_blank" >RIV/68407700:21340/16:00300542 - isvavai.cz</a>
Výsledek na webu
<a href="http://iopscience.iop.org/article/10.1088/1367-2630/18/2/023040/meta;jsessionid=D5616285246B76C4E5B71AF0C884A750.c1.iopscience.cld.iop.org" target="_blank" >http://iopscience.iop.org/article/10.1088/1367-2630/18/2/023040/meta;jsessionid=D5616285246B76C4E5B71AF0C884A750.c1.iopscience.cld.iop.org</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1367-2630/18/2/023040" target="_blank" >10.1088/1367-2630/18/2/023040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Percolation assisted excitation transport in discrete-time quantum walks
Popis výsledku v původním jazyce
Coherent transport of excitations along chains of coupled quantum systems represents an interesting problem with a number of applications ranging from quantum optics to solar cell technology. A convenient tool for studying such processes are quantum walks. They allow us to determine all the process features in a quantitative way. We study the survival probability and the transport efficiency on a simple, highly symmetric graph represented by a ring. The propagation of excitation is modeled by a discrete-time (coined) quantum walk. For a two-state quantum walk, where the excitation (walker) has to leave its actual position to the neighboring sites, the survival probability decays exponentially and the transport efficiency is unity. The decay rate of the survival probability can be estimated using the leading eigenvalue of the evolution operator. However, if the excitation is allowed to stay at its present position, i.e. the propagation is modeled by a lazy quantum walk, then part of the wave-packet can be trapped in the vicinity of the origin and never reaches the sink. In such a case, the survival probability does not vanish and the excitation transport is not efficient. The dependency of the transport efficiency on the initial state is determined. Nevertheless, we show that for some lazy quantum walks dynamical, percolations of the ring eliminate the trapping effect and efficient excitation transport can be achieved.
Název v anglickém jazyce
Percolation assisted excitation transport in discrete-time quantum walks
Popis výsledku anglicky
Coherent transport of excitations along chains of coupled quantum systems represents an interesting problem with a number of applications ranging from quantum optics to solar cell technology. A convenient tool for studying such processes are quantum walks. They allow us to determine all the process features in a quantitative way. We study the survival probability and the transport efficiency on a simple, highly symmetric graph represented by a ring. The propagation of excitation is modeled by a discrete-time (coined) quantum walk. For a two-state quantum walk, where the excitation (walker) has to leave its actual position to the neighboring sites, the survival probability decays exponentially and the transport efficiency is unity. The decay rate of the survival probability can be estimated using the leading eigenvalue of the evolution operator. However, if the excitation is allowed to stay at its present position, i.e. the propagation is modeled by a lazy quantum walk, then part of the wave-packet can be trapped in the vicinity of the origin and never reaches the sink. In such a case, the survival probability does not vanish and the excitation transport is not efficient. The dependency of the transport efficiency on the initial state is determined. Nevertheless, we show that for some lazy quantum walks dynamical, percolations of the ring eliminate the trapping effect and efficient excitation transport can be achieved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
New Journal of Physics
ISSN
1367-2630
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000372456300002
EID výsledku v databázi Scopus
2-s2.0-84960153582