Key graph properties affecting transport efficiency of flip-flop Grover percolated quantum walks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00358546" target="_blank" >RIV/68407700:21340/22:00358546 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevA.105.062417" target="_blank" >https://doi.org/10.1103/PhysRevA.105.062417</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.105.062417" target="_blank" >10.1103/PhysRevA.105.062417</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Key graph properties affecting transport efficiency of flip-flop Grover percolated quantum walks
Popis výsledku v původním jazyce
Quantum walks exhibit properties without classical analogues. One of those is the phenomenon of asymptotic trapping???there can be nonzero probability of the quantum walker being localized in a finite part of the underlying graph indefinitely even though locally all directions of movement are assigned nonzero amplitudes at each step. We study quantum walks with the flip-flop shift operator and the Grover coin, where this effect has been identified previously. For the version of the walk further modified by a random dynamical disruption of the graph (percolated quantum walks) we provide a recipe for the construction of a complete basis of the subspace of trapped states allowing to determine the asymptotic probability of trapping for arbitrary finite connected simple graphs, thus significantly generalizing the previously known result restricted to planar 3-regular graphs. We show how the position of the source and sink together with the graph geometry and its modifications affect the excitation transport. This gives us a deep insight into processes where elongation or addition of dead-end subgraphs may surprisingly result in enhanced transport and we design graphs exhibiting this pronounced behavior. In some cases this even provides closed-form formulas for the asymptotic transport probability in dependence on some structure parameters of the graphs.
Název v anglickém jazyce
Key graph properties affecting transport efficiency of flip-flop Grover percolated quantum walks
Popis výsledku anglicky
Quantum walks exhibit properties without classical analogues. One of those is the phenomenon of asymptotic trapping???there can be nonzero probability of the quantum walker being localized in a finite part of the underlying graph indefinitely even though locally all directions of movement are assigned nonzero amplitudes at each step. We study quantum walks with the flip-flop shift operator and the Grover coin, where this effect has been identified previously. For the version of the walk further modified by a random dynamical disruption of the graph (percolated quantum walks) we provide a recipe for the construction of a complete basis of the subspace of trapped states allowing to determine the asymptotic probability of trapping for arbitrary finite connected simple graphs, thus significantly generalizing the previously known result restricted to planar 3-regular graphs. We show how the position of the source and sink together with the graph geometry and its modifications affect the excitation transport. This gives us a deep insight into processes where elongation or addition of dead-end subgraphs may surprisingly result in enhanced transport and we design graphs exhibiting this pronounced behavior. In some cases this even provides closed-form formulas for the asymptotic transport probability in dependence on some structure parameters of the graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Svazek periodika
105
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000812346700007
EID výsledku v databázi Scopus
2-s2.0-85133335291