Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computational analysis of the conserved curvature driven flow for open curves in the plane

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00305024" target="_blank" >RIV/68407700:21340/16:00305024 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0378475416000318" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0378475416000318</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.matcom.2016.02.004" target="_blank" >10.1016/j.matcom.2016.02.004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computational analysis of the conserved curvature driven flow for open curves in the plane

  • Popis výsledku v původním jazyce

    The paper studies the constrained curvature flow for open planar curves with fixed endpoints by means of its numerical solution. This law originates in the theory of phase transitions for crystalline materials and where it describes the evolution of closed embedded curves with constant enclosed area. We show that the area is preserved for open curves with fixed endpoints as well. Here, the area is given by the curve and its ends connected to the origin of coordinates. We provide the form of the stationary solution towards which any other solution converges asymptotically in time. The evolution law is reformulated by means of the direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is spatially discretized by means of the flowing finite volumes method and solved numerically by the explicit Runge–Kutta solver. We experimentally investigate the order of approximation of the scheme by means of our numerical data and by knowing the analytical solution. We also discuss the role of the suitable tangential redistribution. For this purpose, several computational studies related to the open curve dynamics are presented.

  • Název v anglickém jazyce

    Computational analysis of the conserved curvature driven flow for open curves in the plane

  • Popis výsledku anglicky

    The paper studies the constrained curvature flow for open planar curves with fixed endpoints by means of its numerical solution. This law originates in the theory of phase transitions for crystalline materials and where it describes the evolution of closed embedded curves with constant enclosed area. We show that the area is preserved for open curves with fixed endpoints as well. Here, the area is given by the curve and its ends connected to the origin of coordinates. We provide the form of the stationary solution towards which any other solution converges asymptotically in time. The evolution law is reformulated by means of the direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is spatially discretized by means of the flowing finite volumes method and solved numerically by the explicit Runge–Kutta solver. We experimentally investigate the order of approximation of the scheme by means of our numerical data and by knowing the analytical solution. We also discuss the role of the suitable tangential redistribution. For this purpose, several computational studies related to the open curve dynamics are presented.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GB14-36566G" target="_blank" >GB14-36566G: Multidisciplinární výzkumné centrum moderních materiálů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics and Computers in Simulation

  • ISSN

    0378-4754

  • e-ISSN

  • Svazek periodika

    126

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    000375848900001

  • EID výsledku v databázi Scopus