Fractional Brownian Bridge as a Tool for Short Time Series Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00305203" target="_blank" >RIV/68407700:21340/16:00305203 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fractional Brownian Bridge as a Tool for Short Time Series Analysis
Popis výsledku v původním jazyce
Traditional fractional stochastic processes represent suitable models for fractal analysis of long time series. However, due to their asymptotic behaviour, the estimation of Hurst exponent is often biased when the sample is too short. The novel approach is based on the construction of fractional Brownian bridge and thanks to its statistical properties and artificial extension to infinite length, it can be used for short time series investigation and resulting estimate was proven not to be burdened by bias. At first, the input signal is split into short stationary segments and the optimal interval length can be obtained via multiple statistical testing. Subsequently, the estimation of the Hurst exponent and its standard deviation is performed on the interval level. The methodology is applied to the stock market indices and based on the Hurst exponent variability in time, the decision about its predictability can be made. As a referential technique, the revisited zero-crossing method is presented and its perfor
Název v anglickém jazyce
Fractional Brownian Bridge as a Tool for Short Time Series Analysis
Popis výsledku anglicky
Traditional fractional stochastic processes represent suitable models for fractal analysis of long time series. However, due to their asymptotic behaviour, the estimation of Hurst exponent is often biased when the sample is too short. The novel approach is based on the construction of fractional Brownian bridge and thanks to its statistical properties and artificial extension to infinite length, it can be used for short time series investigation and resulting estimate was proven not to be burdened by bias. At first, the input signal is split into short stationary segments and the optimal interval length can be obtained via multiple statistical testing. Subsequently, the estimation of the Hurst exponent and its standard deviation is performed on the interval level. The methodology is applied to the stock market indices and based on the Hurst exponent variability in time, the decision about its predictability can be made. As a referential technique, the revisited zero-crossing method is presented and its perfor
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics 2016
ISBN
978-80-7494-296-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
149-154
Název nakladatele
Technical University of Liberec
Místo vydání
Liberec
Místo konání akce
Liberec
Datum konání akce
6. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000385239500026