Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hurst exponent estimation from short time series

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00335999" target="_blank" >RIV/68407700:21340/19:00335999 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://hdl.handle.net/10467/86994" target="_blank" >http://hdl.handle.net/10467/86994</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11760-018-1353-2" target="_blank" >10.1007/s11760-018-1353-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hurst exponent estimation from short time series

  • Popis výsledku v původním jazyce

    Fractal investigation of time series is very complex for several reasons. Due to the existence of fully continuous model, on which the majority of conventional methods are based, the quality of Hurst exponent estimate is often influenced by the number of input data and its sampling rate. In this work, we present a novel approach of unbiased Hurst exponent estimate that is suitable especially for short time series. The crucial idea is deriving the discrete fractional Brownian bridge and its statistical properties that can be subsequently used for model parameter estimation. For the verification and demonstration of efficiency of the method, several generators of fractional Gaussian noise are presented and tested.

  • Název v anglickém jazyce

    Hurst exponent estimation from short time series

  • Popis výsledku anglicky

    Fractal investigation of time series is very complex for several reasons. Due to the existence of fully continuous model, on which the majority of conventional methods are based, the quality of Hurst exponent estimate is often influenced by the number of input data and its sampling rate. In this work, we present a novel approach of unbiased Hurst exponent estimate that is suitable especially for short time series. The crucial idea is deriving the discrete fractional Brownian bridge and its statistical properties that can be subsequently used for model parameter estimation. For the verification and demonstration of efficiency of the method, several generators of fractional Gaussian noise are presented and tested.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIGNAL IMAGE AND VIDEO PROCESSING

  • ISSN

    1863-1703

  • e-ISSN

    1863-1711

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    7

  • Strana od-do

    263-269

  • Kód UT WoS článku

    000459989400007

  • EID výsledku v databázi Scopus

    2-s2.0-85053269788