Long Memory in Electricity Price Time Series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F16%3A39902102" target="_blank" >RIV/00216275:25410/16:39902102 - isvavai.cz</a>
Výsledek na webu
<a href="http://sgemsocial.org/ssgemlib/spip.php?article2705" target="_blank" >http://sgemsocial.org/ssgemlib/spip.php?article2705</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5593/SGEMSOCIAL2016/B23/S06.050" target="_blank" >10.5593/SGEMSOCIAL2016/B23/S06.050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Long Memory in Electricity Price Time Series
Popis výsledku v původním jazyce
The goal of this paper is to analyze a long memory in electricity price time series. Electricity price is different from other commodities by its features like mean-reversion, high volatility rate and frequent occurrence of jumps. These differences are mainly caused by non-storability of the electricity, which need to balance supply and demand in real time. We calculate the Hurst exponent by using the Rescaled Range analysis. The Hurst exponent is a measure that has been widely used to evaluate the self-similarity and correlation properties of fractional Brownian noise, the time-series produced by a fractional (fractal) Gaussian process. The Hurst exponent is used to evaluate the presence or absence of long-range dependence and its degree in a time-series. The Hurst exponent is a numerical estimate of the predictability of a time series. In this paper we investigate the use of the Hurst exponent to classify series of the biggest European energy markets EEX (Central European Energy Exchange). The values of the Hurst exponent vary between 0 and 1, with higher values indicating a smoother trend, less volatility, and less roughness. Random walk has a Hurst exponent of 0,5. When the values of the Hurst exponent lie close to 1.0, the system has long-memory dependence. The larger the H value is, the stronger the trend. Our results show exactly between the stochastic and deterministic process. We think that this value is a sufficient value for credible prediction.
Název v anglickém jazyce
Long Memory in Electricity Price Time Series
Popis výsledku anglicky
The goal of this paper is to analyze a long memory in electricity price time series. Electricity price is different from other commodities by its features like mean-reversion, high volatility rate and frequent occurrence of jumps. These differences are mainly caused by non-storability of the electricity, which need to balance supply and demand in real time. We calculate the Hurst exponent by using the Rescaled Range analysis. The Hurst exponent is a measure that has been widely used to evaluate the self-similarity and correlation properties of fractional Brownian noise, the time-series produced by a fractional (fractal) Gaussian process. The Hurst exponent is used to evaluate the presence or absence of long-range dependence and its degree in a time-series. The Hurst exponent is a numerical estimate of the predictability of a time series. In this paper we investigate the use of the Hurst exponent to classify series of the biggest European energy markets EEX (Central European Energy Exchange). The values of the Hurst exponent vary between 0 and 1, with higher values indicating a smoother trend, less volatility, and less roughness. Random walk has a Hurst exponent of 0,5. When the values of the Hurst exponent lie close to 1.0, the system has long-memory dependence. The larger the H value is, the stronger the trend. Our results show exactly between the stochastic and deterministic process. We think that this value is a sufficient value for credible prediction.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SGEM 2016 : Political Sciences, Law, Finance, Economics and Tourism Conference Proceedings. Book 2. Vol. 3
ISBN
978-619-7105-74-2
ISSN
2367-5659
e-ISSN
—
Počet stran výsledku
10
Strana od-do
395-404
Název nakladatele
STEF92 Technology Ltd.
Místo vydání
Sofie
Místo konání akce
Albena
Datum konání akce
22. 8. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000395727000050