Local Error Analysis and Comparison of the Swept- and Intersection-Based Remapping Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00308990" target="_blank" >RIV/68407700:21340/17:00308990 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/communications-in-computational-physics/article/div-classtitlelocal-error-analysis-and-comparison-of-the-swept-and-intersection-based-remapping-methodsdiv/7E9FDB586152939AA11C343863A45A1C" target="_blank" >https://www.cambridge.org/core/journals/communications-in-computational-physics/article/div-classtitlelocal-error-analysis-and-comparison-of-the-swept-and-intersection-based-remapping-methodsdiv/7E9FDB586152939AA11C343863A45A1C</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4208/cicp.OA-2015-0021" target="_blank" >10.4208/cicp.OA-2015-0021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local Error Analysis and Comparison of the Swept- and Intersection-Based Remapping Methods
Popis výsledku v původním jazyce
In this paper, the numerical error of two widely used methods for remapping of discrete quantities from one computational mesh to another is investigated. We compare the intuitive, but resource intensive method utilizing intersections of computational cells with the faster and simpler swept-region-based method. Both algorithms are formally second order accurate, however, they are known to produce slightly different quantity profiles in practical applications. The second-order estimate of the error formula is constructed algebraically for both algorithms so that their local accuracy can be evaluated. This general estimate is then used to assess the dependence of the performance of both methods on parameters such as the second derivatives of the remapped distribution, mesh geometry or mesh movement. Due to the complexity of such analysis, it is performed on a set of simplified elementary mesh patterns such as cell corner expansion, rotation or shear. On selected numerical tests it is demonstrated that the swept-based method can distort a symmetric quantity distribution more substantially than the intersection-based approach when the computational mesh moves in an unsuitable direction.
Název v anglickém jazyce
Local Error Analysis and Comparison of the Swept- and Intersection-Based Remapping Methods
Popis výsledku anglicky
In this paper, the numerical error of two widely used methods for remapping of discrete quantities from one computational mesh to another is investigated. We compare the intuitive, but resource intensive method utilizing intersections of computational cells with the faster and simpler swept-region-based method. Both algorithms are formally second order accurate, however, they are known to produce slightly different quantity profiles in practical applications. The second-order estimate of the error formula is constructed algebraically for both algorithms so that their local accuracy can be evaluated. This general estimate is then used to assess the dependence of the performance of both methods on parameters such as the second derivatives of the remapped distribution, mesh geometry or mesh movement. Due to the complexity of such analysis, it is performed on a set of simplified elementary mesh patterns such as cell corner expansion, rotation or shear. On selected numerical tests it is demonstrated that the swept-based method can distort a symmetric quantity distribution more substantially than the intersection-based approach when the computational mesh moves in an unsuitable direction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-21318S" target="_blank" >GA14-21318S: Lagrangeovské a ALE metody pro mechaniku stlačitelných tekutin a elasto-plastických pevných látek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Computational Physics
ISSN
1815-2406
e-ISSN
1991-7120
Svazek periodika
21
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
33
Strana od-do
526-558
Kód UT WoS článku
000395527500009
EID výsledku v databázi Scopus
2-s2.0-85012919515