Functional integrals and inequivalent representations in Quantum Field Theory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00312895" target="_blank" >RIV/68407700:21340/17:00312895 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.aop.2017.05.022" target="_blank" >http://dx.doi.org/10.1016/j.aop.2017.05.022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aop.2017.05.022" target="_blank" >10.1016/j.aop.2017.05.022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Functional integrals and inequivalent representations in Quantum Field Theory
Popis výsledku v původním jazyce
We discuss canonical transformations in Quantum Field Theory in the framework of the functional-integral approach. In contrast with ordinary Quantum Mechanics, canonical transformations in Quantum Field Theory are mathematically more subtle due to the existence of unitarily inequivalent representations of canonical commutation relations. When one works with functional integrals, it is not immediately clear how this algebraic feature manifests itself in the formalism. Here we attack this issue by considering the canonical transformations in the context of coherent-state functional integrals. Specifically, in the case of linear canonical transformations, we derive the general functional-integral representations for both transition amplitude and partition function phrased in terms of new canonical variables. By means of this, we show how in the infinite-volume limit the canonical transformations induce a transition from one representation of canonical commutation relations to another one and under what conditions the representations are unitarily inequivalent. We also consider the partition function and derive the energy gap between statistical systems described in two different representations which, among others, allows to establish a connection with continuous phase transitions. We illustrate the inner workings of the outlined mechanism by discussing two prototypical systems: the van Hove model and the Bogoliubov model of weakly interacting Bose gas. (C) 2017 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Functional integrals and inequivalent representations in Quantum Field Theory
Popis výsledku anglicky
We discuss canonical transformations in Quantum Field Theory in the framework of the functional-integral approach. In contrast with ordinary Quantum Mechanics, canonical transformations in Quantum Field Theory are mathematically more subtle due to the existence of unitarily inequivalent representations of canonical commutation relations. When one works with functional integrals, it is not immediately clear how this algebraic feature manifests itself in the formalism. Here we attack this issue by considering the canonical transformations in the context of coherent-state functional integrals. Specifically, in the case of linear canonical transformations, we derive the general functional-integral representations for both transition amplitude and partition function phrased in terms of new canonical variables. By means of this, we show how in the infinite-volume limit the canonical transformations induce a transition from one representation of canonical commutation relations to another one and under what conditions the representations are unitarily inequivalent. We also consider the partition function and derive the energy gap between statistical systems described in two different representations which, among others, allows to establish a connection with continuous phase transitions. We illustrate the inner workings of the outlined mechanism by discussing two prototypical systems: the van Hove model and the Bogoliubov model of weakly interacting Bose gas. (C) 2017 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF17-33812L" target="_blank" >GF17-33812L: Informačně-teoretický přístup ke komplexním dynamickým systémům</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Physics
ISSN
0003-4916
e-ISSN
1096-035X
Svazek periodika
383
Číslo periodika v rámci svazku
Aug
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
207-238
Kód UT WoS článku
000407667300013
EID výsledku v databázi Scopus
2-s2.0-85033451161