Generalized generating functional for mixed-representation Green's functions: A quantum-mechanical approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00318226" target="_blank" >RIV/68407700:21340/17:00318226 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevA.96.052107" target="_blank" >http://dx.doi.org/10.1103/PhysRevA.96.052107</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.96.052107" target="_blank" >10.1103/PhysRevA.96.052107</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized generating functional for mixed-representation Green's functions: A quantum-mechanical approach
Popis výsledku v původním jazyce
When one tries to take into account the nontrivial vacuum structure of quantum field theory, the standard functional-integral tools, such as generating functionals or transitional amplitudes, are often quite inadequate for such purposes. Here we propose a generalized generating functional for Green's functions which allows one to easily distinguish among a continuous set of vacua that are mutually connected via unitary canonical transformations. In order to keep our discussion as simple as possible, we limit ourselves to quantum mechanics where the generating functional of Green's functions is constructed by means of phase-space path integrals. The quantum-mechanical setting allows us to accentuate the main logical steps involved without embarking on technical complications such as renormalization or inequivalent representations that should otherwise be addressed in the full-fledged quantum field theory. We illustrate the inner workings of the generating functional obtained by discussing Green's functions among vacua that are mutually connected via translations and dilatations. Salient issues, including connection with quantum field theory, vacuum-to-vacuum transition amplitudes, and perturbation expansion in the vacuum parameter, are also briefly discussed.
Název v anglickém jazyce
Generalized generating functional for mixed-representation Green's functions: A quantum-mechanical approach
Popis výsledku anglicky
When one tries to take into account the nontrivial vacuum structure of quantum field theory, the standard functional-integral tools, such as generating functionals or transitional amplitudes, are often quite inadequate for such purposes. Here we propose a generalized generating functional for Green's functions which allows one to easily distinguish among a continuous set of vacua that are mutually connected via unitary canonical transformations. In order to keep our discussion as simple as possible, we limit ourselves to quantum mechanics where the generating functional of Green's functions is constructed by means of phase-space path integrals. The quantum-mechanical setting allows us to accentuate the main logical steps involved without embarking on technical complications such as renormalization or inequivalent representations that should otherwise be addressed in the full-fledged quantum field theory. We illustrate the inner workings of the generating functional obtained by discussing Green's functions among vacua that are mutually connected via translations and dilatations. Salient issues, including connection with quantum field theory, vacuum-to-vacuum transition amplitudes, and perturbation expansion in the vacuum parameter, are also briefly discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GF17-33812L" target="_blank" >GF17-33812L: Informačně-teoretický přístup ke komplexním dynamickým systémům</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Svazek periodika
96
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000414667000002
EID výsledku v databázi Scopus
2-s2.0-85033669699