Monotonicity in Bayesian Networks for Computerized Adaptive Testing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00313230" target="_blank" >RIV/68407700:21340/17:00313230 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/17:00476602
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-61581-3_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-61581-3_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-61581-3_12" target="_blank" >10.1007/978-3-319-61581-3_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Monotonicity in Bayesian Networks for Computerized Adaptive Testing
Popis výsledku v původním jazyce
Artificial intelligence is present in many modern computer science applications. The question of effectively learning parameters of such models even with small data samples is still very active. It turns out that restricting conditional probabilities of a probabilistic model by monotonicity conditions might be useful in certain situations. Moreover, in some cases, the modeled reality requires these conditions to hold. In this article we focus on monotonicity conditions in Bayesian Network models. We present an algorithm for learning model parameters, which satisfy monotonicity conditions, based on gradient descent optimization. We test the proposed method on two data sets. One set is synthetic and the other is formed by real data collected for computerized adaptive testing. We compare obtained results with the isotonic regression EM method by Masegosa et al. which also learns BN model parameters satisfying monotonicity. A comparison is performed also with the standard unrestricted EM algorithm for BN learning. Obtained experimental results in our experiments clearly justify monotonicity restrictions. As a consequence of monotonicity requirements, resulting models better fit data.
Název v anglickém jazyce
Monotonicity in Bayesian Networks for Computerized Adaptive Testing
Popis výsledku anglicky
Artificial intelligence is present in many modern computer science applications. The question of effectively learning parameters of such models even with small data samples is still very active. It turns out that restricting conditional probabilities of a probabilistic model by monotonicity conditions might be useful in certain situations. Moreover, in some cases, the modeled reality requires these conditions to hold. In this article we focus on monotonicity conditions in Bayesian Network models. We present an algorithm for learning model parameters, which satisfy monotonicity conditions, based on gradient descent optimization. We test the proposed method on two data sets. One set is synthetic and the other is formed by real data collected for computerized adaptive testing. We compare obtained results with the isotonic regression EM method by Masegosa et al. which also learns BN model parameters satisfying monotonicity. A comparison is performed also with the standard unrestricted EM algorithm for BN learning. Obtained experimental results in our experiments clearly justify monotonicity restrictions. As a consequence of monotonicity requirements, resulting models better fit data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-12010S" target="_blank" >GA16-12010S: Struktury podmíněné nezávislosti: kombinatorické a optimalizační metody</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Symbolic and Quantitative Approaches to Reasoning with Uncertainty
ISBN
978-3-319-61580-6
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
125-134
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Lugano
Datum konání akce
10. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—