Learning bipartite Bayesian networks under monotonicity restrictions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00519831" target="_blank" >RIV/67985556:_____/20:00519831 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/03081079.2019.1692004" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/03081079.2019.1692004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03081079.2019.1692004" target="_blank" >10.1080/03081079.2019.1692004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning bipartite Bayesian networks under monotonicity restrictions
Popis výsledku v původním jazyce
Learning parameters of a probabilistic model is a necessary step in machine learning tasks. We present a method to improve learning from small datasets by using monotonicity conditions. Monotonicity simplifies the learning and it is often required by users. We present an algorithm for Bayesian Networks parameter learning. The algorithm and monotonicity conditions are described, and it is shown that with the monotonicity conditions we can better fit underlying data. Our algorithm is tested on artificial and empiric datasets. We use different methods satisfying monotonicity conditions: the proposed gradient descent, isotonic regression EM, and non-linear optimization. We also provide results of unrestricted EM and gradient descent methods. Learned models are compared with respect to their ability to fit data in terms of log-likelihood and their fit of parameters of the generating model. Our proposed method outperforms other methods for small sets, and provides better or comparable results for larger sets.
Název v anglickém jazyce
Learning bipartite Bayesian networks under monotonicity restrictions
Popis výsledku anglicky
Learning parameters of a probabilistic model is a necessary step in machine learning tasks. We present a method to improve learning from small datasets by using monotonicity conditions. Monotonicity simplifies the learning and it is often required by users. We present an algorithm for Bayesian Networks parameter learning. The algorithm and monotonicity conditions are described, and it is shown that with the monotonicity conditions we can better fit underlying data. Our algorithm is tested on artificial and empiric datasets. We use different methods satisfying monotonicity conditions: the proposed gradient descent, isotonic regression EM, and non-linear optimization. We also provide results of unrestricted EM and gradient descent methods. Learned models are compared with respect to their ability to fit data in terms of log-likelihood and their fit of parameters of the generating model. Our proposed method outperforms other methods for small sets, and provides better or comparable results for larger sets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of General Systems
ISSN
0308-1079
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
88-111
Kód UT WoS článku
000497538000001
EID výsledku v databázi Scopus
2-s2.0-85075330445