Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Learning bipartite Bayesian networks under monotonicity restrictions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F20%3A00519831" target="_blank" >RIV/67985556:_____/20:00519831 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/03081079.2019.1692004" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/03081079.2019.1692004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03081079.2019.1692004" target="_blank" >10.1080/03081079.2019.1692004</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Learning bipartite Bayesian networks under monotonicity restrictions

  • Popis výsledku v původním jazyce

    Learning parameters of a probabilistic model is a necessary step in machine learning tasks. We present a method to improve learning from small datasets by using monotonicity conditions. Monotonicity simplifies the learning and it is often required by users. We present an algorithm for Bayesian Networks parameter learning. The algorithm and monotonicity conditions are described, and it is shown that with the monotonicity conditions we can better fit underlying data. Our algorithm is tested on artificial and empiric datasets. We use different methods satisfying monotonicity conditions: the proposed gradient descent, isotonic regression EM, and non-linear optimization. We also provide results of unrestricted EM and gradient descent methods. Learned models are compared with respect to their ability to fit data in terms of log-likelihood and their fit of parameters of the generating model. Our proposed method outperforms other methods for small sets, and provides better or comparable results for larger sets.

  • Název v anglickém jazyce

    Learning bipartite Bayesian networks under monotonicity restrictions

  • Popis výsledku anglicky

    Learning parameters of a probabilistic model is a necessary step in machine learning tasks. We present a method to improve learning from small datasets by using monotonicity conditions. Monotonicity simplifies the learning and it is often required by users. We present an algorithm for Bayesian Networks parameter learning. The algorithm and monotonicity conditions are described, and it is shown that with the monotonicity conditions we can better fit underlying data. Our algorithm is tested on artificial and empiric datasets. We use different methods satisfying monotonicity conditions: the proposed gradient descent, isotonic regression EM, and non-linear optimization. We also provide results of unrestricted EM and gradient descent methods. Learned models are compared with respect to their ability to fit data in terms of log-likelihood and their fit of parameters of the generating model. Our proposed method outperforms other methods for small sets, and provides better or comparable results for larger sets.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of General Systems

  • ISSN

    0308-1079

  • e-ISSN

  • Svazek periodika

    49

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    24

  • Strana od-do

    88-111

  • Kód UT WoS článku

    000497538000001

  • EID výsledku v databázi Scopus

    2-s2.0-85075330445