Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A self adaptive harmony search based functional link higher order ANN for non-linear data classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099061" target="_blank" >RIV/61989100:27240/16:86099061 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ac.els-cdn.com/S0925231215018494/1-s2.0-S0925231215018494-main.pdf?_tid=a97b19de-0a8b-11e7-90dc-00000aacb360&acdnat=1489698241_39d83b622e036bde3e20d6d631daafb8" target="_blank" >http://ac.els-cdn.com/S0925231215018494/1-s2.0-S0925231215018494-main.pdf?_tid=a97b19de-0a8b-11e7-90dc-00000aacb360&acdnat=1489698241_39d83b622e036bde3e20d6d631daafb8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neucom.2015.11.051" target="_blank" >10.1016/j.neucom.2015.11.051</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A self adaptive harmony search based functional link higher order ANN for non-linear data classification

  • Popis výsledku v původním jazyce

    In the data classification process involving higher order ANNs, it's a herculean task to determine the optimal ANN classification model due to non-linear nature of real world datasets. To add to the woe, it is tedious to adjust the set of weights of ANNs by using appropriate learning algorithm to obtain better classification accuracy. In this paper, an improved variant of harmony search (HS), called self-adaptive harmony search (SAHS) along with gradient descent learning is used with functional link artificial neural network (FLANN) for the task of classification in data mining. Using its past experiences, SAHS adjusts the harmonies according to the maximum and minimum values in the current harmony memory. The powerful combination of this unique strategy of SAHS and searching capabilities of gradient descent search is used to obtain optimal set of weights for FLANN. The proposed method (SAHS-FLANN) is implemented in MATLAB and the results are contrasted with other alternatives (FLANN, GA based FLANN, PSO based FLANN, HS based FLANN, improved HS based FLANN and TLBO based FLANN). To illustrate its effectiveness, SAHS-FLANN is tested on various benchmark datasets from UCI machine learning repository by using 5-fold cross validation technique. Under the null-hypothesis, the proposed method is analyzed by using various statistical tests for statistical correctness of results. The performance of the SAHS-FLANN is found to be better and statistically significant in comparison with other alternatives. The SAHS-FLANN differs from HS-FLANN (HS based FLANN) by the elimination of constant parameters (bandwidth and pitch adjustment rate). Furthermore, it leads to the simplification of steps for the improvisation of weight-sets in IHS-FLANN (improved HS based FLANN) by incorporating adjustments of new weight-sets according to the weight-sets with maximum and minimum fitness. (C) 2015 Elsevier B.V.

  • Název v anglickém jazyce

    A self adaptive harmony search based functional link higher order ANN for non-linear data classification

  • Popis výsledku anglicky

    In the data classification process involving higher order ANNs, it's a herculean task to determine the optimal ANN classification model due to non-linear nature of real world datasets. To add to the woe, it is tedious to adjust the set of weights of ANNs by using appropriate learning algorithm to obtain better classification accuracy. In this paper, an improved variant of harmony search (HS), called self-adaptive harmony search (SAHS) along with gradient descent learning is used with functional link artificial neural network (FLANN) for the task of classification in data mining. Using its past experiences, SAHS adjusts the harmonies according to the maximum and minimum values in the current harmony memory. The powerful combination of this unique strategy of SAHS and searching capabilities of gradient descent search is used to obtain optimal set of weights for FLANN. The proposed method (SAHS-FLANN) is implemented in MATLAB and the results are contrasted with other alternatives (FLANN, GA based FLANN, PSO based FLANN, HS based FLANN, improved HS based FLANN and TLBO based FLANN). To illustrate its effectiveness, SAHS-FLANN is tested on various benchmark datasets from UCI machine learning repository by using 5-fold cross validation technique. Under the null-hypothesis, the proposed method is analyzed by using various statistical tests for statistical correctness of results. The performance of the SAHS-FLANN is found to be better and statistically significant in comparison with other alternatives. The SAHS-FLANN differs from HS-FLANN (HS based FLANN) by the elimination of constant parameters (bandwidth and pitch adjustment rate). Furthermore, it leads to the simplification of steps for the improvisation of weight-sets in IHS-FLANN (improved HS based FLANN) by incorporating adjustments of new weight-sets according to the weight-sets with maximum and minimum fitness. (C) 2015 Elsevier B.V.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neurocomputing

  • ISSN

    0925-2312

  • e-ISSN

  • Svazek periodika

    179

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    69-87

  • Kód UT WoS článku

    000370090300006

  • EID výsledku v databázi Scopus

    2-s2.0-84955629389