A harmony search based gradient descent learning-FLANN (HS-GDL-FLANN) for classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86097032" target="_blank" >RIV/61989100:27240/15:86097032 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-81-322-2208-8_48" target="_blank" >http://dx.doi.org/10.1007/978-81-322-2208-8_48</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-81-322-2208-8_48" target="_blank" >10.1007/978-81-322-2208-8_48</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A harmony search based gradient descent learning-FLANN (HS-GDL-FLANN) for classification
Popis výsledku v původním jazyce
The Harmony Search (HS) algorithm is meta-heuristic optimization inspired by natural phenomena called musical process and it quite simple due to few mathematical requirements and simple steps as compared to earlier meta-heuristic optimization algorithms.It mimics the local and global search procedure of pitch adjustment during production of pleasant harmony by musicians. Although HS has been used in many application like vehicle routing problems, robotics, power and energy etc., in this paper, an attempt is made to design a hybrid FLANN with Harmony Search based Gradient Descent Learning for classification. The proposed algorithm has been compared with FLANN, GA based FLANN and PSO based FLANN classifier to get remarkable performance. All the four classifier are implemented in MATLAB and tested by couples of benchmark datasets from UCI machine learning repository. Finally, to get generalized performance, 5 fold cross validation is adopted and result are analyzed under one-way ANOVA te
Název v anglickém jazyce
A harmony search based gradient descent learning-FLANN (HS-GDL-FLANN) for classification
Popis výsledku anglicky
The Harmony Search (HS) algorithm is meta-heuristic optimization inspired by natural phenomena called musical process and it quite simple due to few mathematical requirements and simple steps as compared to earlier meta-heuristic optimization algorithms.It mimics the local and global search procedure of pitch adjustment during production of pleasant harmony by musicians. Although HS has been used in many application like vehicle routing problems, robotics, power and energy etc., in this paper, an attempt is made to design a hybrid FLANN with Harmony Search based Gradient Descent Learning for classification. The proposed algorithm has been compared with FLANN, GA based FLANN and PSO based FLANN classifier to get remarkable performance. All the four classifier are implemented in MATLAB and tested by couples of benchmark datasets from UCI machine learning repository. Finally, to get generalized performance, 5 fold cross validation is adopted and result are analyzed under one-way ANOVA te
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Smart Innovation, Systems and Technologies. Volume 33
ISBN
978-81-322-2201-9
ISSN
2190-3018
e-ISSN
—
Počet stran výsledku
15
Strana od-do
525-539
Název nakladatele
Springer
Místo vydání
New Delhi
Místo konání akce
Sambalpur
Datum konání akce
20. 12. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—