On self-similarities of cut-and-project sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00316073" target="_blank" >RIV/68407700:21340/17:00316073 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.14311/AP.2017.57.0430" target="_blank" >http://dx.doi.org/10.14311/AP.2017.57.0430</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2017.57.0430" target="_blank" >10.14311/AP.2017.57.0430</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On self-similarities of cut-and-project sets
Popis výsledku v původním jazyce
Among the commonly used mathematical models of quasicrystals are Delone sets constructed using a cut-and-project scheme, the so-called cut-and-project sets. A cut-and-project scheme (L; pi_1; pi_2) is given by a lattice L in R^s and projections pi_1, pi_2 to suitable subspaces V1, V2. In this paper we derive several statements describing the connection between self-similarity transformations of the lattice L and transformations of its projections pi_1(L), pi_2(L). For a self-similarity of a set Sigma we take any linear mapping A such that A(Sigma)subsetSigma, which generalizes the notion of self-similarity usually restricted to scaled rotations. We describe a method of construction of cut-and-project schemes with required self-similarities and apply it to produce a cut-and-project scheme such that pi_1(L) subset R2 is invariant under an isometry of order 5. We describe all linear self-similarities of this scheme and show that they form an 8-dimensional associative algebra over the ring Z. We perform an example of a cut-and-project set with linear self-similarity which is not a scaled rotation.
Název v anglickém jazyce
On self-similarities of cut-and-project sets
Popis výsledku anglicky
Among the commonly used mathematical models of quasicrystals are Delone sets constructed using a cut-and-project scheme, the so-called cut-and-project sets. A cut-and-project scheme (L; pi_1; pi_2) is given by a lattice L in R^s and projections pi_1, pi_2 to suitable subspaces V1, V2. In this paper we derive several statements describing the connection between self-similarity transformations of the lattice L and transformations of its projections pi_1(L), pi_2(L). For a self-similarity of a set Sigma we take any linear mapping A such that A(Sigma)subsetSigma, which generalizes the notion of self-similarity usually restricted to scaled rotations. We describe a method of construction of cut-and-project schemes with required self-similarities and apply it to produce a cut-and-project scheme such that pi_1(L) subset R2 is invariant under an isometry of order 5. We describe all linear self-similarities of this scheme and show that they form an 8-dimensional associative algebra over the ring Z. We perform an example of a cut-and-project set with linear self-similarity which is not a scaled rotation.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-03538S" target="_blank" >GA13-03538S: Algoritmy, dynamika a geometrie numeračních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Polytechnica
ISSN
1210-2709
e-ISSN
—
Svazek periodika
57
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
430-445
Kód UT WoS článku
000424516600010
EID výsledku v databázi Scopus
2-s2.0-85040042981