Correlation dimension as a measure of stock market variability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00316544" target="_blank" >RIV/68407700:21340/17:00316544 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Correlation dimension as a measure of stock market variability
Popis výsledku v původním jazyce
Economical time series often show fractional behaviour. Since this type of data can be considered as a realisation of stochastic process with unknown prop- erties, it can be analysed with the tools of fractal geometry. In the particular case of stock market indices, one can investigate any individual index using state space re- construction according to Whitney theorem. The second possibility of the analysis is the study of development of a group of different indices describing the state of the market at a specific time. Subsequently, long-time stock market history is useful for the investigation of the states as vectors in Euclidean space. Their fractal nature can be studied using correlation dimension. The paper presents several approaches to its estimation and compares the results in terms of the individual stock market behaviour. As a referential technique, the classical approach using correlation sum is presented and its performance is discussed in the context of obtained results. Furthermore, the analysis is useful for the dependency analysis and measure of predictability of time series.
Název v anglickém jazyce
Correlation dimension as a measure of stock market variability
Popis výsledku anglicky
Economical time series often show fractional behaviour. Since this type of data can be considered as a realisation of stochastic process with unknown prop- erties, it can be analysed with the tools of fractal geometry. In the particular case of stock market indices, one can investigate any individual index using state space re- construction according to Whitney theorem. The second possibility of the analysis is the study of development of a group of different indices describing the state of the market at a specific time. Subsequently, long-time stock market history is useful for the investigation of the states as vectors in Euclidean space. Their fractal nature can be studied using correlation dimension. The paper presents several approaches to its estimation and compares the results in terms of the individual stock market behaviour. As a referential technique, the classical approach using correlation sum is presented and its performance is discussed in the context of obtained results. Furthermore, the analysis is useful for the dependency analysis and measure of predictability of time series.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics MME 2017
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
119-124
Název nakladatele
Univerzita Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—