Hamiltonian Constraint Formulation of Classical Field Theories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00318538" target="_blank" >RIV/68407700:21340/17:00318538 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00006-016-0663-0" target="_blank" >http://dx.doi.org/10.1007/s00006-016-0663-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-016-0663-0" target="_blank" >10.1007/s00006-016-0663-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hamiltonian Constraint Formulation of Classical Field Theories
Popis výsledku v původním jazyce
Classical field theory is considered as a theory of unparametrized surfaces embedded in a configuration space, which accommodates, in a symmetric way, spacetime positions and field values. Dynamics is defined via the (Hamiltonian) constraint between multivector-valued generalized momenta, and points in the configuration space. Starting from a variational principle, we derive the local equations of motion, that is, differential equations that determine classical surfaces and momenta. A local Hamilton-Jacobi equation applicable in the field theory then follows readily. In addition, we discuss the relation between symmetries and conservation laws, and derive a Hamiltonian version of the Noether theorem, where the Noether currents are identified as the classical momentum contracted with the symmetry-generating vector fields. The general formalism is illustrated by two examples: the scalar field theory, and the string theory. Throughout the article, we employ the mathematical formalism of geometric algebra and calculus, which allows us to perform completely coordinate-free manipulations.
Název v anglickém jazyce
Hamiltonian Constraint Formulation of Classical Field Theories
Popis výsledku anglicky
Classical field theory is considered as a theory of unparametrized surfaces embedded in a configuration space, which accommodates, in a symmetric way, spacetime positions and field values. Dynamics is defined via the (Hamiltonian) constraint between multivector-valued generalized momenta, and points in the configuration space. Starting from a variational principle, we derive the local equations of motion, that is, differential equations that determine classical surfaces and momenta. A local Hamilton-Jacobi equation applicable in the field theory then follows readily. In addition, we discuss the relation between symmetries and conservation laws, and derive a Hamiltonian version of the Noether theorem, where the Noether currents are identified as the classical momentum contracted with the symmetry-generating vector fields. The general formalism is illustrated by two examples: the scalar field theory, and the string theory. Throughout the article, we employ the mathematical formalism of geometric algebra and calculus, which allows us to perform completely coordinate-free manipulations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-07983S" target="_blank" >GA14-07983S: Struktura vakua v kvantově polních teoriích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCES IN APPLIED CLIFFORD ALGEBRAS
ISSN
0188-7009
e-ISSN
1661-4909
Svazek periodika
27
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
829-851
Kód UT WoS článku
000396031500053
EID výsledku v databázi Scopus
2-s2.0-84964404026