Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00313457" target="_blank" >RIV/68407700:21340/18:00313457 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-91548-7_11" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-91548-7_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-91548-7_11" target="_blank" >10.1007/978-3-319-91548-7_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics
Popis výsledku v původním jazyce
We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells - an equivalent of the discrete maximum principle in scalar variables. We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.
Název v anglickém jazyce
Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics
Popis výsledku anglicky
We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells - an equivalent of the discrete maximum principle in scalar variables. We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-21318S" target="_blank" >GA14-21318S: Lagrangeovské a ALE metody pro mechaniku stlačitelných tekutin a elasto-plastických pevných látek</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Theory, Numerics and Applications of Hyperbolic Problems II
ISBN
978-3-319-91547-0
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
145-157
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Aachen
Datum konání akce
1. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—