Second-invariant-preserving Remap of the 2D Deviatoric Stress Tensor in ALE Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00321852" target="_blank" >RIV/68407700:21340/19:00321852 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.camwa.2018.06.012" target="_blank" >https://doi.org/10.1016/j.camwa.2018.06.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2018.06.012" target="_blank" >10.1016/j.camwa.2018.06.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Second-invariant-preserving Remap of the 2D Deviatoric Stress Tensor in ALE Methods
Popis výsledku v původním jazyce
For numerical simulations of impact problems or fluid-solid interactions, the ALE (Arbitrary Lagrangian-Eulerian) approach is a useful tool due to its ability to keep the computational mesh smooth and moving with the fluid. The elastic-plastic extension of the compressible fluid model requires tensor variables for the description of non-volumetric (deviatoric) mechanical stress. While Lagrangian numerical schemes based on the evolution equation of the stress tensor are well developed, tensor remap is still a relatively unexplored territory. We propose a new approach to deviatoric stress remapping, where the second invariant J2 (a conservative scalar quantity related to the strain energy) is remapped independently of the tensor components. These are re-scaled to match the remapped invariant value, effectively using only the principal directions and eigenvalue ratio from the component-wise remap. This approach is frame invariant, preserves J2 invariant bounds and conserves the total invariant. We compare our method with component-based remapping using a simple synchronized limiter or a specialized stress tensor limiter described in the literature.
Název v anglickém jazyce
Second-invariant-preserving Remap of the 2D Deviatoric Stress Tensor in ALE Methods
Popis výsledku anglicky
For numerical simulations of impact problems or fluid-solid interactions, the ALE (Arbitrary Lagrangian-Eulerian) approach is a useful tool due to its ability to keep the computational mesh smooth and moving with the fluid. The elastic-plastic extension of the compressible fluid model requires tensor variables for the description of non-volumetric (deviatoric) mechanical stress. While Lagrangian numerical schemes based on the evolution equation of the stress tensor are well developed, tensor remap is still a relatively unexplored territory. We propose a new approach to deviatoric stress remapping, where the second invariant J2 (a conservative scalar quantity related to the strain energy) is remapped independently of the tensor components. These are re-scaled to match the remapped invariant value, effectively using only the principal directions and eigenvalue ratio from the component-wise remap. This approach is frame invariant, preserves J2 invariant bounds and conserves the total invariant. We compare our method with component-based remapping using a simple synchronized limiter or a specialized stress tensor limiter described in the literature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Mathematics with Applications
ISSN
0898-1221
e-ISSN
1873-7668
Svazek periodika
78
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
654-669
Kód UT WoS článku
000472128600023
EID výsledku v databázi Scopus
2-s2.0-85048788733