Least informative distributions in maximum q-log-likelihood estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00322787" target="_blank" >RIV/68407700:21340/18:00322787 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0378437118307283" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378437118307283</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physa.2018.06.004" target="_blank" >10.1016/j.physa.2018.06.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Least informative distributions in maximum q-log-likelihood estimation
Popis výsledku v původním jazyce
We use the maximum q-log-likelihood estimation for Least informative distributions (LIDs) in order to estimate the parameters in probability density functions (PDFs) efficiently and robustly when data include outlier(s). LIDs are derived by using convex combinations of two PDFs. A convex combination of two PDFs is composed of an underlying distribution and a contamination. The optimal criterion is obtained by minimizing the change of maximum q-log-likelihood function when the data contain small amount of contamination. In this paper, we make a comparison between ordinary maximum likelihood estimation, maximum q-log-likelihood estimation (MqLE) and LIDs based on MqLE for parameter estimation from data with outliers. We derive a new Fisher information matrix based on the score function for LID from M-function and use it for choice of optimal estimator in the class of MqLE. The model selection is done by the robust information criteria. We test the methods on the real data with outliers and estimate shape and scale parameters of probability distributions. As a result, we show that the LIDs based on MqLE provide the most robust and efficient estimation of the model parameters.
Název v anglickém jazyce
Least informative distributions in maximum q-log-likelihood estimation
Popis výsledku anglicky
We use the maximum q-log-likelihood estimation for Least informative distributions (LIDs) in order to estimate the parameters in probability density functions (PDFs) efficiently and robustly when data include outlier(s). LIDs are derived by using convex combinations of two PDFs. A convex combination of two PDFs is composed of an underlying distribution and a contamination. The optimal criterion is obtained by minimizing the change of maximum q-log-likelihood function when the data contain small amount of contamination. In this paper, we make a comparison between ordinary maximum likelihood estimation, maximum q-log-likelihood estimation (MqLE) and LIDs based on MqLE for parameter estimation from data with outliers. We derive a new Fisher information matrix based on the score function for LID from M-function and use it for choice of optimal estimator in the class of MqLE. The model selection is done by the robust information criteria. We test the methods on the real data with outliers and estimate shape and scale parameters of probability distributions. As a result, we show that the LIDs based on MqLE provide the most robust and efficient estimation of the model parameters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GF17-33812L" target="_blank" >GF17-33812L: Informačně-teoretický přístup ke komplexním dynamickým systémům</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica A: Statistical Mechanics and Its Applications
ISSN
0378-4371
e-ISSN
1873-2119
Svazek periodika
509
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
140-150
Kód UT WoS článku
000441492100012
EID výsledku v databázi Scopus
2-s2.0-85048778152