Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the Favorable Estimation for Fitting Heavy Tailed Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00342150" target="_blank" >RIV/67985807:_____/10:00342150 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the Favorable Estimation for Fitting Heavy Tailed Data

  • Popis výsledku v původním jazyce

    Assessment of heavy tailed data and its compound sums has many applications in insurance, auditing and operational risk capital assessment among others. In this paper, we compare the classical estimators (maximum likelihood, QQ and moment estimators) with the recently introduced robust estimators of ?generalized median, ?trimmed mean and estimators based on t-score moments. We derive the exact distribution of the likelihood ratio tests of homogeneity and simple hypothesis on the tail index of a two-parameter Pareto model. Such exact tests support the assessment of the performance of estimators. In particular, we discuss some problems that one can encounter when misemploying the log-normal assumption based methods supported by the Basel II framework. Real data and simulated examples illustrate the methods.

  • Název v anglickém jazyce

    On the Favorable Estimation for Fitting Heavy Tailed Data

  • Popis výsledku anglicky

    Assessment of heavy tailed data and its compound sums has many applications in insurance, auditing and operational risk capital assessment among others. In this paper, we compare the classical estimators (maximum likelihood, QQ and moment estimators) with the recently introduced robust estimators of ?generalized median, ?trimmed mean and estimators based on t-score moments. We derive the exact distribution of the likelihood ratio tests of homogeneity and simple hypothesis on the tail index of a two-parameter Pareto model. Such exact tests support the assessment of the performance of estimators. In particular, we discuss some problems that one can encounter when misemploying the log-normal assumption based methods supported by the Basel II framework. Real data and simulated examples illustrate the methods.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Statistics

  • ISSN

    0943-4062

  • e-ISSN

  • Svazek periodika

    25

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    19

  • Strana od-do

  • Kód UT WoS článku

    000280074100008

  • EID výsledku v databázi Scopus