On the Favorable Estimation for Fitting Heavy Tailed Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00342150" target="_blank" >RIV/67985807:_____/10:00342150 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Favorable Estimation for Fitting Heavy Tailed Data
Popis výsledku v původním jazyce
Assessment of heavy tailed data and its compound sums has many applications in insurance, auditing and operational risk capital assessment among others. In this paper, we compare the classical estimators (maximum likelihood, QQ and moment estimators) with the recently introduced robust estimators of ?generalized median, ?trimmed mean and estimators based on t-score moments. We derive the exact distribution of the likelihood ratio tests of homogeneity and simple hypothesis on the tail index of a two-parameter Pareto model. Such exact tests support the assessment of the performance of estimators. In particular, we discuss some problems that one can encounter when misemploying the log-normal assumption based methods supported by the Basel II framework. Real data and simulated examples illustrate the methods.
Název v anglickém jazyce
On the Favorable Estimation for Fitting Heavy Tailed Data
Popis výsledku anglicky
Assessment of heavy tailed data and its compound sums has many applications in insurance, auditing and operational risk capital assessment among others. In this paper, we compare the classical estimators (maximum likelihood, QQ and moment estimators) with the recently introduced robust estimators of ?generalized median, ?trimmed mean and estimators based on t-score moments. We derive the exact distribution of the likelihood ratio tests of homogeneity and simple hypothesis on the tail index of a two-parameter Pareto model. Such exact tests support the assessment of the performance of estimators. In particular, we discuss some problems that one can encounter when misemploying the log-normal assumption based methods supported by the Basel II framework. Real data and simulated examples illustrate the methods.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics
ISSN
0943-4062
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
000280074100008
EID výsledku v databázi Scopus
—