Structural equations of supermanifolds immersed in the superspace M-(3 vertical bar 2) (c) with a prescribed curvature
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00328295" target="_blank" >RIV/68407700:21340/18:00328295 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1751-8121/aac971" target="_blank" >http://dx.doi.org/10.1088/1751-8121/aac971</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/aac971" target="_blank" >10.1088/1751-8121/aac971</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structural equations of supermanifolds immersed in the superspace M-(3 vertical bar 2) (c) with a prescribed curvature
Popis výsledku v původním jazyce
The aim of this paper is to construct the structural equations of supermanifolds immersed in Euclidean, hyperbolic and spherical superspaces parametrised with two bosonic and two fermionic variables. To perform this analysis, for each type of immersion, we split the supermanifold into its Grassmannian components and study separately each manifold generated. Even though we consider four variables in the Euclidean case, we obtain that the structural equations of each manifold are linked with the Gauss-Codazzi equations of a surface immersed in a Euclidean or spherical space. In the hyperbolic and spherical superspaces, we find that the body manifolds are linked with the classical Gauss-Codazzi equations for a surface immersed in hyperbolic and spherical spaces, respectively. For some soul manifolds, we show that the immersion of the manifolds must be in a hyperbolic space and that the structural equations split into two cases. In one case, the structural equations reduce to the Liouville equation, which can be completely solved. In the other case, we can express the geometric quantities solely in terms of the metric coefficients, which provide a geometric characterization of the structural equations in terms of functions linked with the Hopf differential, the mean curvature and a new function which does not appear in the characterization of a classical (not super) surface.
Název v anglickém jazyce
Structural equations of supermanifolds immersed in the superspace M-(3 vertical bar 2) (c) with a prescribed curvature
Popis výsledku anglicky
The aim of this paper is to construct the structural equations of supermanifolds immersed in Euclidean, hyperbolic and spherical superspaces parametrised with two bosonic and two fermionic variables. To perform this analysis, for each type of immersion, we split the supermanifold into its Grassmannian components and study separately each manifold generated. Even though we consider four variables in the Euclidean case, we obtain that the structural equations of each manifold are linked with the Gauss-Codazzi equations of a surface immersed in a Euclidean or spherical space. In the hyperbolic and spherical superspaces, we find that the body manifolds are linked with the classical Gauss-Codazzi equations for a surface immersed in hyperbolic and spherical spaces, respectively. For some soul manifolds, we show that the immersion of the manifolds must be in a hyperbolic space and that the structural equations split into two cases. In one case, the structural equations reduce to the Liouville equation, which can be completely solved. In the other case, we can express the geometric quantities solely in terms of the metric coefficients, which provide a geometric characterization of the structural equations in terms of functions linked with the Hopf differential, the mean curvature and a new function which does not appear in the characterization of a classical (not super) surface.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Svazek periodika
51
Číslo periodika v rámci svazku
30
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
000435721700002
EID výsledku v databázi Scopus
—