Iterative Methods for Fast Reconstruction of Undersampled Dynamic Contrast-Enhanced MRI Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00325073" target="_blank" >RIV/68407700:21340/19:00325073 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081731:_____/18:00490787 RIV/67985556:_____/18:00490787
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-981-10-9035-6_48" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-981-10-9035-6_48</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9035-6_48" target="_blank" >10.1007/978-981-10-9035-6_48</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Iterative Methods for Fast Reconstruction of Undersampled Dynamic Contrast-Enhanced MRI Data
Popis výsledku v původním jazyce
This paper introduces new variational formulation for reconstruction from subsampled dynamic contrast-enhanced DCE-MRI data, that combines a data-driven approach using estimated temporal basis and total variation regularization (PCA TV). We also experimentally compare the performance of such a model with two other state-of-the-art formulations. One models the shape of perfusion curves in time as a sum of a curve belonging to a low-dimensional space and a function sparse in a suitable domain (L + S model). The other possibility is to regularize both spatial and time domains (ICTGV). We are dealing with the specific situation of the DCE-MRI acquisition with a 9.4T small animal scanner, working with noisier signals than human scanners and with a smaller number of coil elements that can be used for parallel acquisition and small voxels. Evaluation of the selected methods is done through subsampled reconstruction of radially-sampled DCE-MRI data. Our analysis shows that compressed sensed MRI in the form of regularization can be used to increase the temporal resolution of acquisition while keeping a sufficient signal-to-noise ratio.
Název v anglickém jazyce
Iterative Methods for Fast Reconstruction of Undersampled Dynamic Contrast-Enhanced MRI Data
Popis výsledku anglicky
This paper introduces new variational formulation for reconstruction from subsampled dynamic contrast-enhanced DCE-MRI data, that combines a data-driven approach using estimated temporal basis and total variation regularization (PCA TV). We also experimentally compare the performance of such a model with two other state-of-the-art formulations. One models the shape of perfusion curves in time as a sum of a curve belonging to a low-dimensional space and a function sparse in a suitable domain (L + S model). The other possibility is to regularize both spatial and time domains (ICTGV). We are dealing with the specific situation of the DCE-MRI acquisition with a 9.4T small animal scanner, working with noisier signals than human scanners and with a smaller number of coil elements that can be used for parallel acquisition and small voxels. Evaluation of the selected methods is done through subsampled reconstruction of radially-sampled DCE-MRI data. Our analysis shows that compressed sensed MRI in the form of regularization can be used to increase the temporal resolution of acquisition while keeping a sufficient signal-to-noise ratio.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Medical Physics and Biomedical Engineering 2018 (Vol. 1)
ISBN
978-981-10-9034-9
ISSN
1680-0737
e-ISSN
—
Počet stran výsledku
5
Strana od-do
267-271
Název nakladatele
Springer Nature Singapore Pte Ltd.
Místo vydání
—
Místo konání akce
Prague
Datum konání akce
3. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—