Photonic quantum walks with four-dimensional coins
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00335691" target="_blank" >RIV/68407700:21340/19:00335691 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevResearch.1.033036" target="_blank" >https://doi.org/10.1103/PhysRevResearch.1.033036</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevResearch.1.033036" target="_blank" >10.1103/PhysRevResearch.1.033036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Photonic quantum walks with four-dimensional coins
Popis výsledku v původním jazyce
The dimensionality of the internal coin space of discrete-time quantum walks has a strong impact on the complexity and richness of the dynamics of quantum walkers. While two-dimensional coin operators are sufficient to define a certain range of dynamics on complex graphs, higher-dimensional coins are necessary to unleash the full potential of discrete-time quantum walks. In this work, we present an experimental realization of a discrete-time quantum walk on a line graph that, instead of two-dimensional, exhibits a four-dimensional coin space. Making use of the extra degree of freedom we observe multiple ballistic propagation speeds specific to higher-dimensional coin operators. By implementing a scalable technique, we demonstrate quantum walks on circles of various sizes, as well as on an example of a Husimi cactus graph. The quantum walks are realized via time-multiplexing in a Michelson interferometer loop architecture, employing as the coin degrees of freedom the polarization and the traveling direction of the pulses in the loop. Our theoretical analysis shows that the platform supports implementations of quantum walks with arbitrary 4x4 unitary coin operations, and usual quantum walks on a line with various periodic and twisted boundary conditions.
Název v anglickém jazyce
Photonic quantum walks with four-dimensional coins
Popis výsledku anglicky
The dimensionality of the internal coin space of discrete-time quantum walks has a strong impact on the complexity and richness of the dynamics of quantum walkers. While two-dimensional coin operators are sufficient to define a certain range of dynamics on complex graphs, higher-dimensional coins are necessary to unleash the full potential of discrete-time quantum walks. In this work, we present an experimental realization of a discrete-time quantum walk on a line graph that, instead of two-dimensional, exhibits a four-dimensional coin space. Making use of the extra degree of freedom we observe multiple ballistic propagation speeds specific to higher-dimensional coin operators. By implementing a scalable technique, we demonstrate quantum walks on circles of various sizes, as well as on an example of a Husimi cactus graph. The quantum walks are realized via time-multiplexing in a Michelson interferometer loop architecture, employing as the coin degrees of freedom the polarization and the traveling direction of the pulses in the loop. Our theoretical analysis shows that the platform supports implementations of quantum walks with arbitrary 4x4 unitary coin operations, and usual quantum walks on a line with various periodic and twisted boundary conditions.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Research
ISSN
2643-1564
e-ISSN
—
Svazek periodika
1
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—