Projection theorem for discrete-time quantum walks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00341403" target="_blank" >RIV/68407700:21340/20:00341403 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/20:00345798
Výsledek na webu
<a href="https://doi.org/10.4204/EPTCS.315.5" target="_blank" >https://doi.org/10.4204/EPTCS.315.5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4204/EPTCS.315.5" target="_blank" >10.4204/EPTCS.315.5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Projection theorem for discrete-time quantum walks
Popis výsledku v původním jazyce
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a quantum walk. Since the effective walking graph of the projected walk is not necessarily simpler than the original, this may bring new insights into the dynamics of some kinds of quantum walks using known results from thoroughly studied cases like Euclidean lattices. We use abstract treatment of the walking space and walker displacements in aim for a generality of the presented statements. Using this approach we also identify some pathological cases in which the projection mapping breaks down. For walks on lattices, the operation typically results in quantum walks with hyper-dimensional coin spaces. Such walks can, conversely, be viewed as projections of walks on inaccessible, larger spaces, and their properties can be inferred from the parental walk. We show that this is is the case for a lazy quantum walk, a walk with large coherent jumps and a walk on a circle with a twisted boundary condition. We also discuss the relation of this theory to the time-multiplexing optical implementations of quantum walks. Moreover, this manifestly irreversible operation can, in some cases and with a minor adjustment, be undone, and a quantum walk can be reconstructed from a set of its projections.
Název v anglickém jazyce
Projection theorem for discrete-time quantum walks
Popis výsledku anglicky
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a quantum walk. Since the effective walking graph of the projected walk is not necessarily simpler than the original, this may bring new insights into the dynamics of some kinds of quantum walks using known results from thoroughly studied cases like Euclidean lattices. We use abstract treatment of the walking space and walker displacements in aim for a generality of the presented statements. Using this approach we also identify some pathological cases in which the projection mapping breaks down. For walks on lattices, the operation typically results in quantum walks with hyper-dimensional coin spaces. Such walks can, conversely, be viewed as projections of walks on inaccessible, larger spaces, and their properties can be inferred from the parental walk. We show that this is is the case for a lazy quantum walk, a walk with large coherent jumps and a walk on a circle with a twisted boundary condition. We also discuss the relation of this theory to the time-multiplexing optical implementations of quantum walks. Moreover, this manifestly irreversible operation can, in some cases and with a minor adjustment, be undone, and a quantum walk can be reconstructed from a set of its projections.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-15744Y" target="_blank" >GJ19-15744Y: Kvantové a klasické náhodné procházky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings 9th International Conference on Quantum Simulation and Quantum Walks
ISBN
—
ISSN
2075-2180
e-ISSN
2075-2180
Počet stran výsledku
11
Strana od-do
48-58
Název nakladatele
Open Publishing Association
Místo vydání
Sydney
Místo konání akce
Marseille
Datum konání akce
20. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—