Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Projection theorem for discrete-time quantum walks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00341403" target="_blank" >RIV/68407700:21340/20:00341403 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21340/20:00345798

  • Výsledek na webu

    <a href="https://doi.org/10.4204/EPTCS.315.5" target="_blank" >https://doi.org/10.4204/EPTCS.315.5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4204/EPTCS.315.5" target="_blank" >10.4204/EPTCS.315.5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Projection theorem for discrete-time quantum walks

  • Popis výsledku v původním jazyce

    We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a quantum walk. Since the effective walking graph of the projected walk is not necessarily simpler than the original, this may bring new insights into the dynamics of some kinds of quantum walks using known results from thoroughly studied cases like Euclidean lattices. We use abstract treatment of the walking space and walker displacements in aim for a generality of the presented statements. Using this approach we also identify some pathological cases in which the projection mapping breaks down. For walks on lattices, the operation typically results in quantum walks with hyper-dimensional coin spaces. Such walks can, conversely, be viewed as projections of walks on inaccessible, larger spaces, and their properties can be inferred from the parental walk. We show that this is is the case for a lazy quantum walk, a walk with large coherent jumps and a walk on a circle with a twisted boundary condition. We also discuss the relation of this theory to the time-multiplexing optical implementations of quantum walks. Moreover, this manifestly irreversible operation can, in some cases and with a minor adjustment, be undone, and a quantum walk can be reconstructed from a set of its projections.

  • Název v anglickém jazyce

    Projection theorem for discrete-time quantum walks

  • Popis výsledku anglicky

    We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a quantum walk. Since the effective walking graph of the projected walk is not necessarily simpler than the original, this may bring new insights into the dynamics of some kinds of quantum walks using known results from thoroughly studied cases like Euclidean lattices. We use abstract treatment of the walking space and walker displacements in aim for a generality of the presented statements. Using this approach we also identify some pathological cases in which the projection mapping breaks down. For walks on lattices, the operation typically results in quantum walks with hyper-dimensional coin spaces. Such walks can, conversely, be viewed as projections of walks on inaccessible, larger spaces, and their properties can be inferred from the parental walk. We show that this is is the case for a lazy quantum walk, a walk with large coherent jumps and a walk on a circle with a twisted boundary condition. We also discuss the relation of this theory to the time-multiplexing optical implementations of quantum walks. Moreover, this manifestly irreversible operation can, in some cases and with a minor adjustment, be undone, and a quantum walk can be reconstructed from a set of its projections.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-15744Y" target="_blank" >GJ19-15744Y: Kvantové a klasické náhodné procházky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings 9th International Conference on Quantum Simulation and Quantum Walks

  • ISBN

  • ISSN

    2075-2180

  • e-ISSN

    2075-2180

  • Počet stran výsledku

    11

  • Strana od-do

    48-58

  • Název nakladatele

    Open Publishing Association

  • Místo vydání

    Sydney

  • Místo konání akce

    Marseille

  • Datum konání akce

    20. 1. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku