Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Parametric definition of the influence of a paper in a citation network using communicability functions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00338043" target="_blank" >RIV/68407700:21340/19:00338043 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1093/comnet/cny037" target="_blank" >https://doi.org/10.1093/comnet/cny037</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/comnet/cny037" target="_blank" >10.1093/comnet/cny037</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Parametric definition of the influence of a paper in a citation network using communicability functions

  • Popis výsledku v původním jazyce

    Communicability functions quantify the flow of information between two nodes of a network. In this work, we use them to explore the concept of the influence of a paper in a citation network. These functions depend on a parameter. By varying the parameter in a continuous way we explore different definitions of influence. We study six citation networks, three from physics and three from computer science. As a benchmark, we compare our results against two frequently used measures: the number of citations of a paper and the PageRank algorithm. We show that the ranking of the articles in a network can be varied from being equivalent to the ranking obtained from the number of citations to a behaviour tending to the eigenvector centrality, these limits correspond to small and large values of the communicability-function parameter, respectively. At an intermediate value of the parameter a PageRank-like behaviour is recovered. As a test case, we apply communicability functions to two sets of articles, where at least one author of each paper was awarded a Nobel Prize for the research presented in the corresponding article.

  • Název v anglickém jazyce

    Parametric definition of the influence of a paper in a citation network using communicability functions

  • Popis výsledku anglicky

    Communicability functions quantify the flow of information between two nodes of a network. In this work, we use them to explore the concept of the influence of a paper in a citation network. These functions depend on a parameter. By varying the parameter in a continuous way we explore different definitions of influence. We study six citation networks, three from physics and three from computer science. As a benchmark, we compare our results against two frequently used measures: the number of citations of a paper and the PageRank algorithm. We show that the ranking of the articles in a network can be varied from being equivalent to the ranking obtained from the number of citations to a behaviour tending to the eigenvector centrality, these limits correspond to small and large values of the communicability-function parameter, respectively. At an intermediate value of the parameter a PageRank-like behaviour is recovered. As a test case, we apply communicability functions to two sets of articles, where at least one author of each paper was awarded a Nobel Prize for the research presented in the corresponding article.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF COMPLEX NETWORKS

  • ISSN

    2051-1310

  • e-ISSN

    2051-1329

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    623-640

  • Kód UT WoS článku

    000481609800009

  • EID výsledku v databázi Scopus