Parametric definition of the influence of a paper in a citation network using communicability functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00338043" target="_blank" >RIV/68407700:21340/19:00338043 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1093/comnet/cny037" target="_blank" >https://doi.org/10.1093/comnet/cny037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/comnet/cny037" target="_blank" >10.1093/comnet/cny037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parametric definition of the influence of a paper in a citation network using communicability functions
Popis výsledku v původním jazyce
Communicability functions quantify the flow of information between two nodes of a network. In this work, we use them to explore the concept of the influence of a paper in a citation network. These functions depend on a parameter. By varying the parameter in a continuous way we explore different definitions of influence. We study six citation networks, three from physics and three from computer science. As a benchmark, we compare our results against two frequently used measures: the number of citations of a paper and the PageRank algorithm. We show that the ranking of the articles in a network can be varied from being equivalent to the ranking obtained from the number of citations to a behaviour tending to the eigenvector centrality, these limits correspond to small and large values of the communicability-function parameter, respectively. At an intermediate value of the parameter a PageRank-like behaviour is recovered. As a test case, we apply communicability functions to two sets of articles, where at least one author of each paper was awarded a Nobel Prize for the research presented in the corresponding article.
Název v anglickém jazyce
Parametric definition of the influence of a paper in a citation network using communicability functions
Popis výsledku anglicky
Communicability functions quantify the flow of information between two nodes of a network. In this work, we use them to explore the concept of the influence of a paper in a citation network. These functions depend on a parameter. By varying the parameter in a continuous way we explore different definitions of influence. We study six citation networks, three from physics and three from computer science. As a benchmark, we compare our results against two frequently used measures: the number of citations of a paper and the PageRank algorithm. We show that the ranking of the articles in a network can be varied from being equivalent to the ranking obtained from the number of citations to a behaviour tending to the eigenvector centrality, these limits correspond to small and large values of the communicability-function parameter, respectively. At an intermediate value of the parameter a PageRank-like behaviour is recovered. As a test case, we apply communicability functions to two sets of articles, where at least one author of each paper was awarded a Nobel Prize for the research presented in the corresponding article.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPLEX NETWORKS
ISSN
2051-1310
e-ISSN
2051-1329
Svazek periodika
7
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
623-640
Kód UT WoS článku
000481609800009
EID výsledku v databázi Scopus
—