Causal network discovery by iterative conditioning: Comparison of algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00337425" target="_blank" >RIV/68407700:21340/20:00337425 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/20:00520385 RIV/00023752:_____/20:43920249
Výsledek na webu
<a href="https://doi.org/10.1063/1.5115267" target="_blank" >https://doi.org/10.1063/1.5115267</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5115267" target="_blank" >10.1063/1.5115267</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Causal network discovery by iterative conditioning: Comparison of algorithms
Popis výsledku v původním jazyce
Estimating causal interactions in complex dynamical systems is an important problem encountered in many fields of current science. While a theoretical solution for detecting the causal interactions has been previously formulated in the framework of prediction improvement, it generally requires the computation of high-dimensional information functionals -- a situation invoking the curse of dimensionality with increasing network size. Recently, several methods have been proposed to alleviate this problem, based on iterative procedures for assessment of conditional (in)dependences. In the current work, we bring a comparison of several such prominent approaches. This is done both by theoretical comparison of the algorithms using a formulation in a common framework, and by numerical simulations including realistic complex coupling patterns. The theoretical analysis highlights the key similarities and differences between the algorithms, hinting on their comparative strengths and weaknesses. The method assumptions and specific properties such as false positive control and order dependence are discussed. Numerical simulations suggest that while the accuracy of most of the algorithms is almost indistinguishable, there are substantial differences in their computational demands, ranging theoretically from polynomial to exponential complexity, and leading to substantial differences in computation time in realistic scenarios depending on the density and size of networks. Based on analysis of the algorithms and numerical simulations, we propose a hybrid approach providing competitive accuracy with improved computational efficiency.
Název v anglickém jazyce
Causal network discovery by iterative conditioning: Comparison of algorithms
Popis výsledku anglicky
Estimating causal interactions in complex dynamical systems is an important problem encountered in many fields of current science. While a theoretical solution for detecting the causal interactions has been previously formulated in the framework of prediction improvement, it generally requires the computation of high-dimensional information functionals -- a situation invoking the curse of dimensionality with increasing network size. Recently, several methods have been proposed to alleviate this problem, based on iterative procedures for assessment of conditional (in)dependences. In the current work, we bring a comparison of several such prominent approaches. This is done both by theoretical comparison of the algorithms using a formulation in a common framework, and by numerical simulations including realistic complex coupling patterns. The theoretical analysis highlights the key similarities and differences between the algorithms, hinting on their comparative strengths and weaknesses. The method assumptions and specific properties such as false positive control and order dependence are discussed. Numerical simulations suggest that while the accuracy of most of the algorithms is almost indistinguishable, there are substantial differences in their computational demands, ranging theoretically from polynomial to exponential complexity, and leading to substantial differences in computation time in realistic scenarios depending on the density and size of networks. Based on analysis of the algorithms and numerical simulations, we propose a hybrid approach providing competitive accuracy with improved computational efficiency.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos: An Interdisciplinary Journal of Nonlinear Science
ISSN
1054-1500
e-ISSN
1089-7682
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000539636200007
EID výsledku v databázi Scopus
2-s2.0-85078309242