Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Causal network discovery by iterative conditioning: Comparison of algorithms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00337425" target="_blank" >RIV/68407700:21340/20:00337425 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985807:_____/20:00520385 RIV/00023752:_____/20:43920249

  • Výsledek na webu

    <a href="https://doi.org/10.1063/1.5115267" target="_blank" >https://doi.org/10.1063/1.5115267</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5115267" target="_blank" >10.1063/1.5115267</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Causal network discovery by iterative conditioning: Comparison of algorithms

  • Popis výsledku v původním jazyce

    Estimating causal interactions in complex dynamical systems is an important problem encountered in many fields of current science. While a theoretical solution for detecting the causal interactions has been previously formulated in the framework of prediction improvement, it generally requires the computation of high-dimensional information functionals -- a situation invoking the curse of dimensionality with increasing network size. Recently, several methods have been proposed to alleviate this problem, based on iterative procedures for assessment of conditional (in)dependences. In the current work, we bring a comparison of several such prominent approaches. This is done both by theoretical comparison of the algorithms using a formulation in a common framework, and by numerical simulations including realistic complex coupling patterns. The theoretical analysis highlights the key similarities and differences between the algorithms, hinting on their comparative strengths and weaknesses. The method assumptions and specific properties such as false positive control and order dependence are discussed. Numerical simulations suggest that while the accuracy of most of the algorithms is almost indistinguishable, there are substantial differences in their computational demands, ranging theoretically from polynomial to exponential complexity, and leading to substantial differences in computation time in realistic scenarios depending on the density and size of networks. Based on analysis of the algorithms and numerical simulations, we propose a hybrid approach providing competitive accuracy with improved computational efficiency.

  • Název v anglickém jazyce

    Causal network discovery by iterative conditioning: Comparison of algorithms

  • Popis výsledku anglicky

    Estimating causal interactions in complex dynamical systems is an important problem encountered in many fields of current science. While a theoretical solution for detecting the causal interactions has been previously formulated in the framework of prediction improvement, it generally requires the computation of high-dimensional information functionals -- a situation invoking the curse of dimensionality with increasing network size. Recently, several methods have been proposed to alleviate this problem, based on iterative procedures for assessment of conditional (in)dependences. In the current work, we bring a comparison of several such prominent approaches. This is done both by theoretical comparison of the algorithms using a formulation in a common framework, and by numerical simulations including realistic complex coupling patterns. The theoretical analysis highlights the key similarities and differences between the algorithms, hinting on their comparative strengths and weaknesses. The method assumptions and specific properties such as false positive control and order dependence are discussed. Numerical simulations suggest that while the accuracy of most of the algorithms is almost indistinguishable, there are substantial differences in their computational demands, ranging theoretically from polynomial to exponential complexity, and leading to substantial differences in computation time in realistic scenarios depending on the density and size of networks. Based on analysis of the algorithms and numerical simulations, we propose a hybrid approach providing competitive accuracy with improved computational efficiency.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos: An Interdisciplinary Journal of Nonlinear Science

  • ISSN

    1054-1500

  • e-ISSN

    1089-7682

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    000539636200007

  • EID výsledku v databázi Scopus

    2-s2.0-85078309242