The Landau Hamiltonian with δ-potentials supported on curves
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00339702" target="_blank" >RIV/68407700:21340/20:00339702 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1142/S0129055X20500105" target="_blank" >https://doi.org/10.1142/S0129055X20500105</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129055X20500105" target="_blank" >10.1142/S0129055X20500105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Landau Hamiltonian with δ-potentials supported on curves
Popis výsledku v původním jazyce
The spectral properties of the singularly perturbed self-adjoint Landau Hamiltonian Aα = (idel + A)2 + αδ ς in L2(ℝ2) with a δ-potential supported on a finite C1,1-smooth curve ς are studied. Here A = 1 2B(-x2,x1)τ is the vector potential, B > 0 is the strength of the homogeneous magnetic field, and α L) is a position-dependent real coefficient modeling the strength of the singular interaction on the curve. After a general discussion of the qualitative spectral properties of & and its resolvent, one of the main objectives in the present paper is a local spectral analysis of & near the Landau levels B(2q + 1), q ℕ0. Under various conditions on &, it is shown that the perturbation smears the Landau levels into eigenvalue clusters, and the accumulation rate of the eigenvalues within these clusters is determined in terms of the capacity of the support of . Furthermore, the use of Landau Hamiltonians with δ-perturbations as model operators for more realistic quantum systems is justified by showing that A can be approximated in the norm resolvent sense by a family of Landau Hamiltonians with suitably scaled regular potentials. 2020 World Scientific Publishing Company.
Název v anglickém jazyce
The Landau Hamiltonian with δ-potentials supported on curves
Popis výsledku anglicky
The spectral properties of the singularly perturbed self-adjoint Landau Hamiltonian Aα = (idel + A)2 + αδ ς in L2(ℝ2) with a δ-potential supported on a finite C1,1-smooth curve ς are studied. Here A = 1 2B(-x2,x1)τ is the vector potential, B > 0 is the strength of the homogeneous magnetic field, and α L) is a position-dependent real coefficient modeling the strength of the singular interaction on the curve. After a general discussion of the qualitative spectral properties of & and its resolvent, one of the main objectives in the present paper is a local spectral analysis of & near the Landau levels B(2q + 1), q ℕ0. Under various conditions on &, it is shown that the perturbation smears the Landau levels into eigenvalue clusters, and the accumulation rate of the eigenvalues within these clusters is determined in terms of the capacity of the support of . Furthermore, the use of Landau Hamiltonians with δ-perturbations as model operators for more realistic quantum systems is justified by showing that A can be approximated in the norm resolvent sense by a family of Landau Hamiltonians with suitably scaled regular potentials. 2020 World Scientific Publishing Company.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Reviews in Mathematical Physics
ISSN
0129-055X
e-ISSN
1793-6659
Svazek periodika
32
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
47
Strana od-do
—
Kód UT WoS článku
000531487500002
EID výsledku v databázi Scopus
2-s2.0-85073877359