Transition Property for α -Power Free Languages with α>=2 and k>=3 Letters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00345716" target="_blank" >RIV/68407700:21340/20:00345716 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-48516-0_22" target="_blank" >https://doi.org/10.1007/978-3-030-48516-0_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-48516-0_22" target="_blank" >10.1007/978-3-030-48516-0_22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transition Property for α -Power Free Languages with α>=2 and k>=3 Letters
Popis výsledku v původním jazyce
In 1985, Restivo and Salemi presented a list of five problems concerning power free languages. Problem 4 states: Given α -power-free words u and v, decide whether there is a transition from u to v. Problem 5 states: Given α -power-free words u and v, find a transition word w, if it exists. Let Σ_k denote an alphabet with k letters. Let L_{k,α} denote the α-power free language over the alphabet Σ_k , where α is a rational number or a rational “number with +”. If α is a “number with +” then suppose k>=3 and α>=2. If α is “only” a number then suppose k=3 and α>2 or k>3 and α>=2. We show that: If u element L_{k,α} is a right extendable word in L_{k,α} and v element L_{k,α} is a left extendable word in L_{k,α} then there is a (transition) word w such that uwvelementL_{k,α}. We also show a construction of the word w.
Název v anglickém jazyce
Transition Property for α -Power Free Languages with α>=2 and k>=3 Letters
Popis výsledku anglicky
In 1985, Restivo and Salemi presented a list of five problems concerning power free languages. Problem 4 states: Given α -power-free words u and v, decide whether there is a transition from u to v. Problem 5 states: Given α -power-free words u and v, find a transition word w, if it exists. Let Σ_k denote an alphabet with k letters. Let L_{k,α} denote the α-power free language over the alphabet Σ_k , where α is a rational number or a rational “number with +”. If α is a “number with +” then suppose k>=3 and α>=2. If α is “only” a number then suppose k=3 and α>2 or k>3 and α>=2. We show that: If u element L_{k,α} is a right extendable word in L_{k,α} and v element L_{k,α} is a left extendable word in L_{k,α} then there is a (transition) word w such that uwvelementL_{k,α}. We also show a construction of the word w.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Developments in Language Theory
ISBN
978-3-030-48515-3
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
10
Strana od-do
294-303
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Tampa
Datum konání akce
11. 5. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—