Application of Convolutional Neural Networks in Neutrino Physics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353092" target="_blank" >RIV/68407700:21340/21:00353092 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1742-6596/1730/1/012116" target="_blank" >https://doi.org/10.1088/1742-6596/1730/1/012116</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/1730/1/012116" target="_blank" >10.1088/1742-6596/1730/1/012116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Convolutional Neural Networks in Neutrino Physics
Popis výsledku v původním jazyce
Convolutional neural networks (CNNs), as a deep learning algorithm, have successfully been used for analyzing visual image data over the past years. As some of the physical experiments can produce image-like data, it is more than fitting to combine the interdisciplinary knowledge between high energy physics and deep learning. Especially in the domain of neutrino physics, the particle classification problem has played an important role and CNNs have shown exceptional results for the image classification. In this paper, results of application of CNN called SE-ResNET on Monte Carlo simulated image data is presented. These visual images are tailored to fit measured data from future Deep Underground Neutrino Experiment. The image classification focuses primarily on neutrino flavor classification, namely on classification of charged current (CC) electron νe, CC muon νμ, CC tauon ντ and neutral current (NC); and secondarily on other characteristics of the image, such as whether the observed particle is neutrino or antineutrino. The results are important for further physical analysis of the neutrino experiment event, e.g. for study of neutrino oscillation.
Název v anglickém jazyce
Application of Convolutional Neural Networks in Neutrino Physics
Popis výsledku anglicky
Convolutional neural networks (CNNs), as a deep learning algorithm, have successfully been used for analyzing visual image data over the past years. As some of the physical experiments can produce image-like data, it is more than fitting to combine the interdisciplinary knowledge between high energy physics and deep learning. Especially in the domain of neutrino physics, the particle classification problem has played an important role and CNNs have shown exceptional results for the image classification. In this paper, results of application of CNN called SE-ResNET on Monte Carlo simulated image data is presented. These visual images are tailored to fit measured data from future Deep Underground Neutrino Experiment. The image classification focuses primarily on neutrino flavor classification, namely on classification of charged current (CC) electron νe, CC muon νμ, CC tauon ντ and neutral current (NC); and secondarily on other characteristics of the image, such as whether the observed particle is neutrino or antineutrino. The results are important for further physical analysis of the neutrino experiment event, e.g. for study of neutrino oscillation.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics Conference Series
ISSN
1742-6588
e-ISSN
—
Svazek periodika
1730
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85101494799