CNN with residual learning extensions in neutrino high energy physics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353091" target="_blank" >RIV/68407700:21340/21:00353091 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1742-6596/1730/1/012133" target="_blank" >https://doi.org/10.1088/1742-6596/1730/1/012133</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/1730/1/012133" target="_blank" >10.1088/1742-6596/1730/1/012133</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CNN with residual learning extensions in neutrino high energy physics
Popis výsledku v původním jazyce
As many reconstruction steps in neutrino high energy physics (HEP) are similar to image pattern recognition tasks, we explore the potential of Convolutional Neural Networks (CNN) combined with residual machine learning algorithm. Characteristic features from neutrino track image pixelmaps are extracted at different scales and these features are used for classification of the type of neutrino interaction. In this contribution, we sumarize observed performance of the residual neural networks (ResNet) for neutrino charged current (CC) interaction detections using image-like Monte Carlo simulated data for muon and electron neutrinos. The two topologies depicted at the neutrino detectors differ, muon neutrino CC interaction is dominated by a slowly ionizing muon, while electron neutrino CC interaction is usually recorded as a wide shower. For the ResNet performance evaluation, we use area under ROC curve (AUC) as the evaluation metric. We observe an improvement while using residual learning compared to general CNN architecture, which is caused by a more stable training with lesser vulnerability to the vanishing gradient of the ResNets. Moreover, stacking other hidden layers within our ResNet model greatly increased the AUC value on the test neutrino dataset without the signs of unstable training or overfitting.
Název v anglickém jazyce
CNN with residual learning extensions in neutrino high energy physics
Popis výsledku anglicky
As many reconstruction steps in neutrino high energy physics (HEP) are similar to image pattern recognition tasks, we explore the potential of Convolutional Neural Networks (CNN) combined with residual machine learning algorithm. Characteristic features from neutrino track image pixelmaps are extracted at different scales and these features are used for classification of the type of neutrino interaction. In this contribution, we sumarize observed performance of the residual neural networks (ResNet) for neutrino charged current (CC) interaction detections using image-like Monte Carlo simulated data for muon and electron neutrinos. The two topologies depicted at the neutrino detectors differ, muon neutrino CC interaction is dominated by a slowly ionizing muon, while electron neutrino CC interaction is usually recorded as a wide shower. For the ResNet performance evaluation, we use area under ROC curve (AUC) as the evaluation metric. We observe an improvement while using residual learning compared to general CNN architecture, which is caused by a more stable training with lesser vulnerability to the vanishing gradient of the ResNets. Moreover, stacking other hidden layers within our ResNet model greatly increased the AUC value on the test neutrino dataset without the signs of unstable training or overfitting.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics Conference Series
ISSN
1742-6588
e-ISSN
—
Svazek periodika
1730
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85101573067