Unified thermodynamic stability analysis in fluids and elastic materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353598" target="_blank" >RIV/68407700:21340/21:00353598 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.fluid.2021.113219" target="_blank" >https://doi.org/10.1016/j.fluid.2021.113219</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fluid.2021.113219" target="_blank" >10.1016/j.fluid.2021.113219</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unified thermodynamic stability analysis in fluids and elastic materials
Popis výsledku v původním jazyce
Thermodynamic stability provides the range of admissible properties of fluids and deformable solids. It also allows determination if a substance can exist in given conditions. When a fluid reaches its limit of thermodynamic stability, it should change phase. In deformable solids, instability may lead to failure, and cracks are formed, the bulk solid stays the same, but work from tension is converted to surface energy. In single-component fluids, thermodynamic stability leads to the dual conditions that the isothermal compressibility and the heat capacity be positive at constant volume. In solids, both in 2D and 3D, the bulk modulus Kand the Lamé constant μshould be positive; these two conditions arise from the mechanical stability. The thermal stability requires that the heat capacity to be positive. The criteria of thermodynamic stability in fluids and deformable solids are often derived on different approaches. In fluids, the derivations are based on a minimum of thermodynamic functions such as internal energy or Helmholtz free energy. In solids, various expressions are based on volumetric behavior, geometrical, dynamic, and energy expressions. We are not aware of generalized derivations for both fluids and solids. In this work, we derive the criteria of thermodynamics stability of fluids, and deformable solids in 1D, 2D, and 3D. The derivations are based on the minimum of the Helmholtz free energy. The motivation from this work is to set a basis for expansion to thermodynamic stability of fluid-solid systems in relation to effect of different fluids on failure of solids
Název v anglickém jazyce
Unified thermodynamic stability analysis in fluids and elastic materials
Popis výsledku anglicky
Thermodynamic stability provides the range of admissible properties of fluids and deformable solids. It also allows determination if a substance can exist in given conditions. When a fluid reaches its limit of thermodynamic stability, it should change phase. In deformable solids, instability may lead to failure, and cracks are formed, the bulk solid stays the same, but work from tension is converted to surface energy. In single-component fluids, thermodynamic stability leads to the dual conditions that the isothermal compressibility and the heat capacity be positive at constant volume. In solids, both in 2D and 3D, the bulk modulus Kand the Lamé constant μshould be positive; these two conditions arise from the mechanical stability. The thermal stability requires that the heat capacity to be positive. The criteria of thermodynamic stability in fluids and deformable solids are often derived on different approaches. In fluids, the derivations are based on a minimum of thermodynamic functions such as internal energy or Helmholtz free energy. In solids, various expressions are based on volumetric behavior, geometrical, dynamic, and energy expressions. We are not aware of generalized derivations for both fluids and solids. In this work, we derive the criteria of thermodynamics stability of fluids, and deformable solids in 1D, 2D, and 3D. The derivations are based on the minimum of the Helmholtz free energy. The motivation from this work is to set a basis for expansion to thermodynamic stability of fluid-solid systems in relation to effect of different fluids on failure of solids
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-09093S" target="_blank" >GA21-09093S: Vícefázové proudění, transport a změny struktury zeminy související se zamrzáním a rozmrzáním vody v podpovrchových vrstvách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fluid Phase Equilibria
ISSN
0378-3812
e-ISSN
1879-0224
Svazek periodika
549
Číslo periodika v rámci svazku
113219
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
000703584800014
EID výsledku v databázi Scopus
2-s2.0-85115926483