On a thermodynamic framework for developing boundary conditions for Korteweg-type fluids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423463" target="_blank" >RIV/00216208:11320/20:10423463 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pq1ZLC6H2R" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pq1ZLC6H2R</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijengsci.2020.103316" target="_blank" >10.1016/j.ijengsci.2020.103316</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a thermodynamic framework for developing boundary conditions for Korteweg-type fluids
Popis výsledku v původním jazyce
We provide a derivation of several classes of boundary conditions for fluids of Korteweg-type using a simple and transparent thermodynamic approach that automatically guarantees that the derived boundary conditions are compatible with the second law of thermodynamics. The starting assumption of our approach is to describe the boundary of the domain as the membrane separating two different continua, one inside the domain, and the other outside the domain. With this viewpoint one may employ the framework of continuum thermodynamics involving singular surfaces. This approach allows us to identify, for various classes of surface Helmholtz free energies, the corresponding surface entropy production mechanisms. By establishing the constitutive relations that guarantee that the surface entropy production is non-negative, we identify a new class of boundary conditions, which on one hand generalizes in a nontrivial manner the Navier's slip boundary conditions, and on the other hand describes dynamic and static contact angle conditions. We explore the general model in detail for a particular case of a Korteweg fluid where the Helmholtz free energy in the bulk is that of a van der Waals fluid. We perform a series of numerical experiments to document the basic qualitative features of the novel boundary conditions and their practical applicability to model phenomena such as the contact angle hysteresis. (C) 2020 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
On a thermodynamic framework for developing boundary conditions for Korteweg-type fluids
Popis výsledku anglicky
We provide a derivation of several classes of boundary conditions for fluids of Korteweg-type using a simple and transparent thermodynamic approach that automatically guarantees that the derived boundary conditions are compatible with the second law of thermodynamics. The starting assumption of our approach is to describe the boundary of the domain as the membrane separating two different continua, one inside the domain, and the other outside the domain. With this viewpoint one may employ the framework of continuum thermodynamics involving singular surfaces. This approach allows us to identify, for various classes of surface Helmholtz free energies, the corresponding surface entropy production mechanisms. By establishing the constitutive relations that guarantee that the surface entropy production is non-negative, we identify a new class of boundary conditions, which on one hand generalizes in a nontrivial manner the Navier's slip boundary conditions, and on the other hand describes dynamic and static contact angle conditions. We explore the general model in detail for a particular case of a Korteweg fluid where the Helmholtz free energy in the bulk is that of a van der Waals fluid. We perform a series of numerical experiments to document the basic qualitative features of the novel boundary conditions and their practical applicability to model phenomena such as the contact angle hysteresis. (C) 2020 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Engineering Science
ISSN
0020-7225
e-ISSN
—
Svazek periodika
154
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
28
Strana od-do
103316
Kód UT WoS článku
000567605600006
EID výsledku v databázi Scopus
2-s2.0-85086573883