Stochastic modelling of fractal diffusion and dimension estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00359821" target="_blank" >RIV/68407700:21340/22:00359821 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.physa.2022.127624" target="_blank" >https://doi.org/10.1016/j.physa.2022.127624</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physa.2022.127624" target="_blank" >10.1016/j.physa.2022.127624</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stochastic modelling of fractal diffusion and dimension estimation
Popis výsledku v původním jazyce
The revision of classical methods for spectral and walk dimension estimates is the main aim of the paper. Being focused on the unbiased estimation of the walk and spectral dimensions, we aim to construct the estimates with the minimal mean square error. Accompanied simulation experiments are performed on finite substrates, spacial structures serving as a good model of both continuum and fractal sets. We compare the classical approach based on the log-log transform of asymptotic models of returning probabilities and the second moments, and we also develop a weighted approach to improve the statistical properties of dimension estimates. The other discussed aspect is whether to simulate diffusion using the classical graph diffusion model with zero probability of staying in the same vertex or to prefer the physically motivated model of diffusion over edges with the optimal value of jump probability. Finally, we present the results of simulation experiments on two-dimensional finite substrates which approximate the continuum and selected Sierpinski gaskets and carpets. The paper also summarises general suggestions based on the obtained results from the simulation experiments.
Název v anglickém jazyce
Stochastic modelling of fractal diffusion and dimension estimation
Popis výsledku anglicky
The revision of classical methods for spectral and walk dimension estimates is the main aim of the paper. Being focused on the unbiased estimation of the walk and spectral dimensions, we aim to construct the estimates with the minimal mean square error. Accompanied simulation experiments are performed on finite substrates, spacial structures serving as a good model of both continuum and fractal sets. We compare the classical approach based on the log-log transform of asymptotic models of returning probabilities and the second moments, and we also develop a weighted approach to improve the statistical properties of dimension estimates. The other discussed aspect is whether to simulate diffusion using the classical graph diffusion model with zero probability of staying in the same vertex or to prefer the physically motivated model of diffusion over edges with the optimal value of jump probability. Finally, we present the results of simulation experiments on two-dimensional finite substrates which approximate the continuum and selected Sierpinski gaskets and carpets. The paper also summarises general suggestions based on the obtained results from the simulation experiments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica A: Statistical Mechanics and Its Applications
ISSN
0378-4371
e-ISSN
1873-2119
Svazek periodika
602
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000830512800005
EID výsledku v databázi Scopus
2-s2.0-85131450048