Application of rotational spectrum for correlation dimension estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00316537" target="_blank" >RIV/68407700:21340/17:00316537 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.chaos.2017.04.026" target="_blank" >http://dx.doi.org/10.1016/j.chaos.2017.04.026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2017.04.026" target="_blank" >10.1016/j.chaos.2017.04.026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of rotational spectrum for correlation dimension estimation
Popis výsledku v původním jazyce
Correlation dimension is one of the many types of fractal dimension. It is usually estimated from a finite number of points from a fractal set using correlation sum and regression in a log-log plot. However, this traditional approach requires a large amount of data and often leads to a biased estimate. The novel approach proposed here can be used for the estimation of the correlation dimension in a frequency domain using the power spectrum of the investigated fractal set. This work presents a new spectral characteristic called “rotational spectrum” and shows its properties in relation to the correlation dimension. The theoretical results can be directly applied to uniformly distributed samples from a given point set. The efficiency of the proposed method was tested on sets with a known correlation dimension using Monte Carlo simulation. The simulation results showed that this method can provide an unbiased estimation for many types of fractal sets.
Název v anglickém jazyce
Application of rotational spectrum for correlation dimension estimation
Popis výsledku anglicky
Correlation dimension is one of the many types of fractal dimension. It is usually estimated from a finite number of points from a fractal set using correlation sum and regression in a log-log plot. However, this traditional approach requires a large amount of data and often leads to a biased estimate. The novel approach proposed here can be used for the estimation of the correlation dimension in a frequency domain using the power spectrum of the investigated fractal set. This work presents a new spectral characteristic called “rotational spectrum” and shows its properties in relation to the correlation dimension. The theoretical results can be directly applied to uniformly distributed samples from a given point set. The efficiency of the proposed method was tested on sets with a known correlation dimension using Monte Carlo simulation. The simulation results showed that this method can provide an unbiased estimation for many types of fractal sets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CHAOS SOLITONS & FRACTALS
ISSN
0960-0779
e-ISSN
1873-2887
Svazek periodika
99
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
256-262
Kód UT WoS článku
000402945300033
EID výsledku v databázi Scopus
2-s2.0-85017518743