Classification by the Use of Decomposition of Correlation Integral
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F09%3A00173045" target="_blank" >RIV/68407700:21460/09:00173045 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/09:00342904
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification by the Use of Decomposition of Correlation Integral
Popis výsledku v původním jazyce
The correlation dimension is usually used to study features of fractals and data generating processes. For estimating the value of the correlation dimension in a particular case, a polynomial approximation of correlation integral is often used and then linear regression for logarithms of variables is applied. In this Chapter, we show that the correlation integral can be decomposed into functions each related to a particular point of data space. For these functions, one can use similar polynomial approximations such as the correlation integral. The essential difference is that the value of the exponent, which would correspond to the correlation dimension, differs in accordance to the position of the point in question. Moreover, we show that the multiplicative constant represents the probability density estimation at that point. This finding is used to construct a classifier. Tests with some data sets from the Machine Learning Repository show that this classifier can be very effective.
Název v anglickém jazyce
Classification by the Use of Decomposition of Correlation Integral
Popis výsledku anglicky
The correlation dimension is usually used to study features of fractals and data generating processes. For estimating the value of the correlation dimension in a particular case, a polynomial approximation of correlation integral is often used and then linear regression for logarithms of variables is applied. In this Chapter, we show that the correlation integral can be decomposed into functions each related to a particular point of data space. For these functions, one can use similar polynomial approximations such as the correlation integral. The essential difference is that the value of the exponent, which would correspond to the correlation dimension, differs in accordance to the position of the point in question. Moreover, we show that the multiplicative constant represents the probability density estimation at that point. This finding is used to construct a classifier. Tests with some data sets from the Machine Learning Repository show that this classifier can be very effective.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Foundations of Computational Intelligence: Studies in Computational Intelligence
ISBN
978-3-642-01535-9
Počet stran výsledku
17
Strana od-do
—
Počet stran knihy
380
Název nakladatele
Springer
Místo vydání
Berlin
Kód UT WoS kapitoly
—