Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Graded generalized geometry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00360376" target="_blank" >RIV/68407700:21340/22:00360376 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.geomphys.2022.104683" target="_blank" >https://doi.org/10.1016/j.geomphys.2022.104683</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geomphys.2022.104683" target="_blank" >10.1016/j.geomphys.2022.104683</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Graded generalized geometry

  • Popis výsledku v původním jazyce

    Generalized geometry finds many applications in the mathematical description of some aspects of string theory. In a nutshell, it explores various structures on a generalized tangent bundle associated to a given manifold. In particular, several integrability conditions can be formulated in terms of a canonical Dorfman bracket, an example of Courant algebroid. On the other hand, smooth manifolds can be generalized to involve functions of Z-graded variables which do not necessarily commute. This leads to a mathematical theory of graded manifolds. It is only natural to combine the two theories by exploring the structures on a generalized tangent bundle associated to a given graded manifold. After recalling elementary graded geometry, graded Courant algebroids on graded vector bundles are introduced. We show that there is a canonical bracket on a generalized tangent bundle associated to a graded manifold. Graded analogues of Dirac structures and generalized complex structures are explored. We introduce differential graded Courant algebroids which can be viewed as a generalization of Q-manifolds. A definition and examples of graded Lie bialgebroids are given.

  • Název v anglickém jazyce

    Graded generalized geometry

  • Popis výsledku anglicky

    Generalized geometry finds many applications in the mathematical description of some aspects of string theory. In a nutshell, it explores various structures on a generalized tangent bundle associated to a given manifold. In particular, several integrability conditions can be formulated in terms of a canonical Dorfman bracket, an example of Courant algebroid. On the other hand, smooth manifolds can be generalized to involve functions of Z-graded variables which do not necessarily commute. This leads to a mathematical theory of graded manifolds. It is only natural to combine the two theories by exploring the structures on a generalized tangent bundle associated to a given graded manifold. After recalling elementary graded geometry, graded Courant algebroids on graded vector bundles are introduced. We show that there is a canonical bracket on a generalized tangent bundle associated to a graded manifold. Graded analogues of Dirac structures and generalized complex structures are explored. We introduce differential graded Courant algebroids which can be viewed as a generalization of Q-manifolds. A definition and examples of graded Lie bialgebroids are given.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Geometry and Physics

  • ISSN

    0393-0440

  • e-ISSN

    1879-1662

  • Svazek periodika

    182

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    37

  • Strana od-do

  • Kód UT WoS článku

    000875628400001

  • EID výsledku v databázi Scopus

    2-s2.0-85139725122