A gravitational action with stringy Q and R fluxes via deformed differential graded Poisson algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10443968" target="_blank" >RIV/00216208:11320/21:10443968 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h6YIhqw64W" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h6YIhqw64W</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/JHEP12(2021)143" target="_blank" >10.1007/JHEP12(2021)143</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A gravitational action with stringy Q and R fluxes via deformed differential graded Poisson algebras
Popis výsledku v původním jazyce
We study a deformation of a 2-graded Poisson algebra where the functions of the phase space variables are complemented by linear functions of parity odd velocities. The deformation is carried by a 2-form B-field and a bivector Pi, that we consider as gauge fields of the geometric and non-geometric fluxes H, f, Q and R arising in the context of string theory compactification. The technique used to deform the Poisson brackets is widely known for the point particle interacting with a U(1) gauge field, but not in the case of non-abelian or higher spin fields. The construction is closely related to Generalized Geometry: with an element of the algebra that squares to zero, the graded symplectic picture is equivalent to an exact Courant algebroid over the generalized tangent bundle E congruent to TM circle plus T*M, and to its higher gauge theory. A particular idempotent graded canonical transformation is equivalent to the generalized metric. Focusing on the generalized differential geometry side we construct an action functional with the Ricci tensor of a connection on covectors, encoding the dynamics of a gravitational theory for a contravariant metric tensor and Q and R fluxes. We also extract a connection on vector fields and determine a non-symmetric metric gravity theory involving a metric and H-flux.
Název v anglickém jazyce
A gravitational action with stringy Q and R fluxes via deformed differential graded Poisson algebras
Popis výsledku anglicky
We study a deformation of a 2-graded Poisson algebra where the functions of the phase space variables are complemented by linear functions of parity odd velocities. The deformation is carried by a 2-form B-field and a bivector Pi, that we consider as gauge fields of the geometric and non-geometric fluxes H, f, Q and R arising in the context of string theory compactification. The technique used to deform the Poisson brackets is widely known for the point particle interacting with a U(1) gauge field, but not in the case of non-abelian or higher spin fields. The construction is closely related to Generalized Geometry: with an element of the algebra that squares to zero, the graded symplectic picture is equivalent to an exact Courant algebroid over the generalized tangent bundle E congruent to TM circle plus T*M, and to its higher gauge theory. A particular idempotent graded canonical transformation is equivalent to the generalized metric. Focusing on the generalized differential geometry side we construct an action functional with the Ricci tensor of a connection on covectors, encoding the dynamics of a gravitational theory for a contravariant metric tensor and Q and R fluxes. We also extract a connection on vector fields and determine a non-symmetric metric gravity theory involving a metric and H-flux.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopické a homologické metody a nástroje úzce související s matematickou fyzikou</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of High Energy Physics [online]
ISSN
1029-8479
e-ISSN
—
Svazek periodika
2021
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
35
Strana od-do
143
Kód UT WoS článku
000733306200006
EID výsledku v databázi Scopus
2-s2.0-85121641975