Lattice Boltzmann Method Analysis Tool (LBMAT)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00363929" target="_blank" >RIV/68407700:21340/23:00363929 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11075-022-01476-8" target="_blank" >https://doi.org/10.1007/s11075-022-01476-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-022-01476-8" target="_blank" >10.1007/s11075-022-01476-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lattice Boltzmann Method Analysis Tool (LBMAT)
Popis výsledku v původním jazyce
A general computational tool for the derivation of equivalent partial differential equations (EPDEs) is presented for the lattice Boltzmann method (LBM) with general collision operators that include single relaxation time (SRT-LBM), multiple relaxation time (MRT-LBM), central LBM (CLBM), or cumulant LBM (CuLBM). The method can be used to recover the advection–diffusion equations (ADEs), Navier–Stokes equations (NSEs), and other problems that could be solved by LBM in all dimensions. The derivation of EPDEs starts with the discrete (lattice) Boltzmann equation for raw moments and uses spatio-temporal Taylor expansion of these moments to obtain a system of partial differential equations. Then, to recover the desired ADEs or NSEs with additional partial differential terms up to a given order, a computationally feasible algorithm is proposed to eliminate higher order moments. The algorithm for the derivation of EPDEs, under the name of LBMAT (Lattice Boltzmann Method Analysis Tool), is implemented in C++ using the GiNaC library for symbolic algebraic computations. In order to optimize memory demands for higher dimension LBM models such as D3Q27, a custom-tailored data structure for storing the terms of partial differential expressions is proposed. The implementation of LBMAT is available to the community as open-source software under the terms and conditions of the GNU general public license (GPL).
Název v anglickém jazyce
Lattice Boltzmann Method Analysis Tool (LBMAT)
Popis výsledku anglicky
A general computational tool for the derivation of equivalent partial differential equations (EPDEs) is presented for the lattice Boltzmann method (LBM) with general collision operators that include single relaxation time (SRT-LBM), multiple relaxation time (MRT-LBM), central LBM (CLBM), or cumulant LBM (CuLBM). The method can be used to recover the advection–diffusion equations (ADEs), Navier–Stokes equations (NSEs), and other problems that could be solved by LBM in all dimensions. The derivation of EPDEs starts with the discrete (lattice) Boltzmann equation for raw moments and uses spatio-temporal Taylor expansion of these moments to obtain a system of partial differential equations. Then, to recover the desired ADEs or NSEs with additional partial differential terms up to a given order, a computationally feasible algorithm is proposed to eliminate higher order moments. The algorithm for the derivation of EPDEs, under the name of LBMAT (Lattice Boltzmann Method Analysis Tool), is implemented in C++ using the GiNaC library for symbolic algebraic computations. In order to optimize memory demands for higher dimension LBM models such as D3Q27, a custom-tailored data structure for storing the terms of partial differential expressions is proposed. The implementation of LBMAT is available to the community as open-source software under the terms and conditions of the GNU general public license (GPL).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
1572-9265
Svazek periodika
93
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
1509-1525
Kód UT WoS článku
000899904200001
EID výsledku v databázi Scopus
2-s2.0-85144141843