Equivalent finite difference and partial differential equations for the lattice Boltzmann method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353470" target="_blank" >RIV/68407700:21340/21:00353470 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.camwa.2021.03.014" target="_blank" >https://doi.org/10.1016/j.camwa.2021.03.014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2021.03.014" target="_blank" >10.1016/j.camwa.2021.03.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Equivalent finite difference and partial differential equations for the lattice Boltzmann method
Popis výsledku v původním jazyce
A general method for the derivation of equivalent finite difference equations (EFDEs) and subsequent equivalent partial differential equations (EPDEs) is presented for a general matrix lattice Boltzmann method (LBM). The method can be used for both the advection diffusion equations and Navier–Stokes equations in all dimensions. In principle, the EFDEs are derived using a recurrence formula. A computational algorithm is proposed for generating sequences of matrices and vectors that are used to obtain EFDEs coefficients. For all DdQq velocity models, the algorithm is proven to be finite and all coefficients are obtained after iterations. The resulting EFDEs and EPDEs are derived for selected velocity models and include the single relaxation time, multiple relaxation times, and cascaded LBM collision operators. The algorithm for the derivation of EFDEs and EPDEs is implemented in C++ using the GiNaC library for symbolic algebraic computations. Its implementation is available under the terms and conditions of the GNU general public license (GPL).
Název v anglickém jazyce
Equivalent finite difference and partial differential equations for the lattice Boltzmann method
Popis výsledku anglicky
A general method for the derivation of equivalent finite difference equations (EFDEs) and subsequent equivalent partial differential equations (EPDEs) is presented for a general matrix lattice Boltzmann method (LBM). The method can be used for both the advection diffusion equations and Navier–Stokes equations in all dimensions. In principle, the EFDEs are derived using a recurrence formula. A computational algorithm is proposed for generating sequences of matrices and vectors that are used to obtain EFDEs coefficients. For all DdQq velocity models, the algorithm is proven to be finite and all coefficients are obtained after iterations. The resulting EFDEs and EPDEs are derived for selected velocity models and include the single relaxation time, multiple relaxation times, and cascaded LBM collision operators. The algorithm for the derivation of EFDEs and EPDEs is implemented in C++ using the GiNaC library for symbolic algebraic computations. Its implementation is available under the terms and conditions of the GNU general public license (GPL).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Mathematics with Applications
ISSN
0898-1221
e-ISSN
1873-7668
Svazek periodika
90
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
96-103
Kód UT WoS článku
000642208500010
EID výsledku v databázi Scopus
2-s2.0-85105009166