Jaynes' principle for quantum Markov processes: generalized Gibbs-von Neumann states rule
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00367546" target="_blank" >RIV/68407700:21340/23:00367546 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1140/epjp/s13360-023-04272-y" target="_blank" >https://doi.org/10.1140/epjp/s13360-023-04272-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjp/s13360-023-04272-y" target="_blank" >10.1140/epjp/s13360-023-04272-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Jaynes' principle for quantum Markov processes: generalized Gibbs-von Neumann states rule
Popis výsledku v původním jazyce
We prove that any asymptotics of a finite-dimensional quantum Markov processes can be formulated in the form of a generalized Jaynes' principle in the discrete as well as in the continuous case. Surprisingly, we find that the open-system dynamics does not require maximization of von Neumann entropy. In fact, the natural functional to be extremized is the quantum relative entropy and the resulting asymptotic states or trajectories are always of the exponential Gibbs-like form. Three versions of the principle are presented for different settings, each treating different prior knowledge: for asymptotic trajectories of fully known initial states, for asymptotic trajectories incompletely determined by known expectation values of some constants of motion and for stationary states incompletely determined by expectation values of some integrals of motion. All versions are based on the knowledge of the underlying dynamics. Hence, our principle is primarily rooted in the inherent physics and it is not solely an information construct. The found principle coincides with the MaxEnt principle in the special case of unital quantum Markov processes. We discuss how the generalized principle modifies fundamental relations of statistical physics.
Název v anglickém jazyce
Jaynes' principle for quantum Markov processes: generalized Gibbs-von Neumann states rule
Popis výsledku anglicky
We prove that any asymptotics of a finite-dimensional quantum Markov processes can be formulated in the form of a generalized Jaynes' principle in the discrete as well as in the continuous case. Surprisingly, we find that the open-system dynamics does not require maximization of von Neumann entropy. In fact, the natural functional to be extremized is the quantum relative entropy and the resulting asymptotic states or trajectories are always of the exponential Gibbs-like form. Three versions of the principle are presented for different settings, each treating different prior knowledge: for asymptotic trajectories of fully known initial states, for asymptotic trajectories incompletely determined by known expectation values of some constants of motion and for stationary states incompletely determined by expectation values of some integrals of motion. All versions are based on the knowledge of the underlying dynamics. Hence, our principle is primarily rooted in the inherent physics and it is not solely an information construct. The found principle coincides with the MaxEnt principle in the special case of unital quantum Markov processes. We discuss how the generalized principle modifies fundamental relations of statistical physics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EUROPEAN PHYSICAL JOURNAL PLUS
ISSN
2190-5444
e-ISSN
—
Svazek periodika
138
Číslo periodika v rámci svazku
657
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001038695400003
EID výsledku v databázi Scopus
2-s2.0-85166019573