Numerical optimization of the Dirichlet boundary condition in the phase field model with an application to pure substance solidification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00368408" target="_blank" >RIV/68407700:21340/23:00368408 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.camwa.2023.06.007" target="_blank" >https://doi.org/10.1016/j.camwa.2023.06.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2023.06.007" target="_blank" >10.1016/j.camwa.2023.06.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical optimization of the Dirichlet boundary condition in the phase field model with an application to pure substance solidification
Popis výsledku v původním jazyce
As opposed to the distributed control of parabolic PDE's, very few contributions currently exist pertaining to the Dirichlet boundary condition control for parabolic PDE's. This motivates our interest in the Dirichlet boundary condition control for the phase field model describing the solidification of a pure substance from a supercooled melt. In particular, our aim is to control the time evolution of the temperature field on the boundary of the computational domain in order to achieve the prescribed shape of the crystal at the given time. To obtain efficient means of computing the gradient of the cost functional, we derive the adjoint problem formally. The gradient is then used to perform gradient descent. The viability of the proposed optimization method is supported by several numerical experiments performed in one and two spatial dimensions. Among other things, these experiments show that a reaction term with simple linear dependence on supercooling in the phase field equation proves to be insufficient in certain scenarios. An alternative reaction term is considered to improve the models behavior.
Název v anglickém jazyce
Numerical optimization of the Dirichlet boundary condition in the phase field model with an application to pure substance solidification
Popis výsledku anglicky
As opposed to the distributed control of parabolic PDE's, very few contributions currently exist pertaining to the Dirichlet boundary condition control for parabolic PDE's. This motivates our interest in the Dirichlet boundary condition control for the phase field model describing the solidification of a pure substance from a supercooled melt. In particular, our aim is to control the time evolution of the temperature field on the boundary of the computational domain in order to achieve the prescribed shape of the crystal at the given time. To obtain efficient means of computing the gradient of the cost functional, we derive the adjoint problem formally. The gradient is then used to perform gradient descent. The viability of the proposed optimization method is supported by several numerical experiments performed in one and two spatial dimensions. Among other things, these experiments show that a reaction term with simple linear dependence on supercooling in the phase field equation proves to be insufficient in certain scenarios. An alternative reaction term is considered to improve the models behavior.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Mathematics with Applications
ISSN
0898-1221
e-ISSN
1873-7668
Svazek periodika
145
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
90-105
Kód UT WoS článku
001033436600001
EID výsledku v databázi Scopus
2-s2.0-85163881714