Turing Instabilities are Not Enough to Ensure Pattern Formation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00372691" target="_blank" >RIV/68407700:21340/24:00372691 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11538-023-01250-4" target="_blank" >https://doi.org/10.1007/s11538-023-01250-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11538-023-01250-4" target="_blank" >10.1007/s11538-023-01250-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Turing Instabilities are Not Enough to Ensure Pattern Formation
Popis výsledku v původním jazyce
Symmetry-breaking instabilities play an important role in understanding the mechanisms underlying the diversity of patterns observed in nature, such as in Turing's reaction-diffusion theory, which connects cellular signalling and transport with the development of growth and form. Extensive literature focuses on the linear stability analysis of homogeneous equilibria in these systems, culminating in a set of conditions for transport-driven instabilities that are commonly presumed to initiate self-organisation. We demonstrate that a selection of simple, canonical transport models with only mild multistable non-linearities can satisfy the Turing instability conditions while also robustly exhibiting only transient patterns. Hence, a Turing-like instability is insufficient for the existence of a patterned state. While it is known that linear theory can fail to predict the formation of patterns, we demonstrate that such failures can appear robustly in systems with multiple stable homogeneous equilibria. Given that biological systems such as gene regulatory networks and spatially distributed ecosystems often exhibit a high degree of multistability and nonlinearity, this raises important questions of how to analyse prospective mechanisms for self-organisation.
Název v anglickém jazyce
Turing Instabilities are Not Enough to Ensure Pattern Formation
Popis výsledku anglicky
Symmetry-breaking instabilities play an important role in understanding the mechanisms underlying the diversity of patterns observed in nature, such as in Turing's reaction-diffusion theory, which connects cellular signalling and transport with the development of growth and form. Extensive literature focuses on the linear stability analysis of homogeneous equilibria in these systems, culminating in a set of conditions for transport-driven instabilities that are commonly presumed to initiate self-organisation. We demonstrate that a selection of simple, canonical transport models with only mild multistable non-linearities can satisfy the Turing instability conditions while also robustly exhibiting only transient patterns. Hence, a Turing-like instability is insufficient for the existence of a patterned state. While it is known that linear theory can fail to predict the formation of patterns, we demonstrate that such failures can appear robustly in systems with multiple stable homogeneous equilibria. Given that biological systems such as gene regulatory networks and spatially distributed ecosystems often exhibit a high degree of multistability and nonlinearity, this raises important questions of how to analyse prospective mechanisms for self-organisation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BULLETIN OF MATHEMATICAL BIOLOGY
ISSN
0092-8240
e-ISSN
1522-9602
Svazek periodika
86
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001152210700002
EID výsledku v databázi Scopus
2-s2.0-85182823230