Two-particle Hadamard walk on dynamically percolated line and circle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00372875" target="_blank" >RIV/68407700:21340/24:00372875 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1402-4896/ad24b3" target="_blank" >https://doi.org/10.1088/1402-4896/ad24b3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1402-4896/ad24b3" target="_blank" >10.1088/1402-4896/ad24b3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two-particle Hadamard walk on dynamically percolated line and circle
Popis výsledku v původním jazyce
Asymptotic dynamics of a Hadamard walk of two non-interacting quantum particles on a dynamically percolated finite line or a circle is investigated. We construct a basis of the attractor space of the corresponding random-unitary dynamics and prove the completeness of our solution. In comparison to the one-particle case, the structure of the attractor space is much more complex, resulting in intriguing asymptotic dynamics. General results are illustrated on two examples. First, for circles of length not divisible by 4 the boundary conditions reduces the number of attractors considerably, allowing for fully analytic solution. Second, we investigate line of length 4 and determine the asymptotic cycle of reduced coin states and position distributions, focusing on the correlations between the two particles. Our results show that a random unitary evolution, which is a combination of quantum dynamics and a classical stochasticity, leads to correlations between initially uncorrelated particles. This is not possible for purely unitary evolution of non-interacting quantum particles. The shared dynamically percolated graph can thus be considered as a weak form of interaction.
Název v anglickém jazyce
Two-particle Hadamard walk on dynamically percolated line and circle
Popis výsledku anglicky
Asymptotic dynamics of a Hadamard walk of two non-interacting quantum particles on a dynamically percolated finite line or a circle is investigated. We construct a basis of the attractor space of the corresponding random-unitary dynamics and prove the completeness of our solution. In comparison to the one-particle case, the structure of the attractor space is much more complex, resulting in intriguing asymptotic dynamics. General results are illustrated on two examples. First, for circles of length not divisible by 4 the boundary conditions reduces the number of attractors considerably, allowing for fully analytic solution. Second, we investigate line of length 4 and determine the asymptotic cycle of reduced coin states and position distributions, focusing on the correlations between the two particles. Our results show that a random unitary evolution, which is a combination of quantum dynamics and a classical stochasticity, leads to correlations between initially uncorrelated particles. This is not possible for purely unitary evolution of non-interacting quantum particles. The shared dynamically percolated graph can thus be considered as a weak form of interaction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica Scripta
ISSN
0031-8949
e-ISSN
1402-4896
Svazek periodika
99
Číslo periodika v rámci svazku
035112
Stát vydavatele periodika
SE - Švédské království
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001162457800001
EID výsledku v databázi Scopus
2-s2.0-85185222544