A lattice Boltzmann approach to mathematical modeling of myocardial perfusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00376533" target="_blank" >RIV/68407700:21340/24:00376533 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/cnm.3833" target="_blank" >https://doi.org/10.1002/cnm.3833</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cnm.3833" target="_blank" >10.1002/cnm.3833</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A lattice Boltzmann approach to mathematical modeling of myocardial perfusion
Popis výsledku v původním jazyce
A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed-hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D-analog approach to 2D diseased case is proposed and its applicability discussed. A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection-diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D-analog approach to 2D diseased case is proposed and its applicability discussed. image
Název v anglickém jazyce
A lattice Boltzmann approach to mathematical modeling of myocardial perfusion
Popis výsledku anglicky
A mathematical model of myocardial perfusion based on the lattice Boltzmann method (LBM) is proposed and its applicability is investigated in both healthy and diseased cases. The myocardium is conceptualized as a porous material in which the transport and mass transfer of a contrast agent in blood flow is studied. The results of myocardial perfusion obtained using LBM in 1D and 2D are confronted with previously reported results in the literature and the results obtained using the mixed-hybrid finite element method. Since LBM is not suitable for simulating flow in heterogeneous porous media, a simplified and computationally efficient 1D-analog approach to 2D diseased case is proposed and its applicability discussed. A mathematical model of myocardial perfusion based on the lattice Boltzmann method and contrast agent transport based on advection-diffusion equation is proposed in 1D and 2D and its applicability is discussed in both healthy and diseased cases in relation to the perfusion magnetic resonance imaging exam. A simplified, computationally efficient 1D-analog approach to 2D diseased case is proposed and its applicability discussed. image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/NV19-08-00071" target="_blank" >NV19-08-00071: Analýza charakteru proudění a predikce vývoje změn v endovaskulárně ošetřených tepnách pomocí MR zobrazování a matematického modelování.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Biomedical Engineering
ISSN
2040-7939
e-ISSN
2040-7947
Svazek periodika
40
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
001215257300001
EID výsledku v databázi Scopus
2-s2.0-85192344767