Predicting the onset of quantum synchronization using machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00380372" target="_blank" >RIV/68407700:21340/24:00380372 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevA.109.052411" target="_blank" >https://doi.org/10.1103/PhysRevA.109.052411</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.109.052411" target="_blank" >10.1103/PhysRevA.109.052411</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting the onset of quantum synchronization using machine learning
Popis výsledku v původním jazyce
We have applied a machine learning algorithm to predict the emergence of environment -induced spontaneous synchronization between two qubits in an open system setting. In particular, we have considered three different models, encompassing global and local dissipation regimes, to describe the open system dynamics of the qubits. We have utilized the k -nearest -neighbor algorithm to estimate the long-time synchronization behavior of the qubits only using the early time expectation values of qubit observables in these three distinct models. Our findings clearly demonstrate the possibility of determining the occurrence of different synchronization phenomena with high precision even at the early stages of the dynamics using a machine learning -based approach. Moreover, we show the robustness of our approach against potential measurement errors in experiments by considering random errors in the qubit expectation values, initialization errors, as well as deviations in the environment temperature. We believe that the presented results can prove to be useful in experimental studies on the determination of quantum synchronization.
Název v anglickém jazyce
Predicting the onset of quantum synchronization using machine learning
Popis výsledku anglicky
We have applied a machine learning algorithm to predict the emergence of environment -induced spontaneous synchronization between two qubits in an open system setting. In particular, we have considered three different models, encompassing global and local dissipation regimes, to describe the open system dynamics of the qubits. We have utilized the k -nearest -neighbor algorithm to estimate the long-time synchronization behavior of the qubits only using the early time expectation values of qubit observables in these three distinct models. Our findings clearly demonstrate the possibility of determining the occurrence of different synchronization phenomena with high precision even at the early stages of the dynamics using a machine learning -based approach. Moreover, we show the robustness of our approach against potential measurement errors in experiments by considering random errors in the qubit expectation values, initialization errors, as well as deviations in the environment temperature. We believe that the presented results can prove to be useful in experimental studies on the determination of quantum synchronization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07169S" target="_blank" >GA23-07169S: Vícečásticová kvantová dynamika na grafech a hypergrafech – teorie a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Svazek periodika
109
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
"052411-1"-"052411-12"
Kód UT WoS článku
001237594600008
EID výsledku v databázi Scopus
2-s2.0-85192997675