Selecting Representative Data Sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F12%3A00196428" target="_blank" >RIV/68407700:21460/12:00196428 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/12:00380642 RIV/68407700:21240/12:00196428
Výsledek na webu
<a href="http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets" target="_blank" >http://www.intechopen.com/books/advances-in-data-mining-knowledge-discovery-and-applications/selecting-representative-data-sets</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5772/50787" target="_blank" >10.5772/50787</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Selecting Representative Data Sets
Popis výsledku v původním jazyce
Many methods of Data Mining use data sets for setting their parameters, particularly training and testing sets. Setting of parameters corresponds to the learning (training) of the methods. It is e.g. a case of artificial neural networks and other adaptive (iterative) methods. Some of these methods utilize so-called validation set as well. A question that can arise is how to correctly divide or other way preprocess a given data set to these sets, i.e. how select data samples from the original set and place them into the training and testing sets. The chapter focuses on an overview of existing methods that deal with methods of data selection and sampling. A general approach to the problem of data selection to training, testing and eventually validation sets is discussed. To be able to compare individual approaches, model evaluation techniques are discussed as well. Data splitting is one of used approaches to construct training, testing and possibly validation sets, but there are many oth
Název v anglickém jazyce
Selecting Representative Data Sets
Popis výsledku anglicky
Many methods of Data Mining use data sets for setting their parameters, particularly training and testing sets. Setting of parameters corresponds to the learning (training) of the methods. It is e.g. a case of artificial neural networks and other adaptive (iterative) methods. Some of these methods utilize so-called validation set as well. A question that can arise is how to correctly divide or other way preprocess a given data set to these sets, i.e. how select data samples from the original set and place them into the training and testing sets. The chapter focuses on an overview of existing methods that deal with methods of data selection and sampling. A general approach to the problem of data selection to training, testing and eventually validation sets is discussed. To be able to compare individual approaches, model evaluation techniques are discussed as well. Data splitting is one of used approaches to construct training, testing and possibly validation sets, but there are many oth
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LG12020" target="_blank" >LG12020: Využití pokročilé statistické analýzy a nestatistických separačních metod pro detekování fyzikálních procesů v datech snímaných urychlovači elementárních částic.</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances in Data Mining Knowledge Discovery and Applications
ISBN
978-953-51-0748-4
Počet stran výsledku
24
Strana od-do
43-66
Počet stran knihy
418
Název nakladatele
InTech - Open Access Company (InTech Europe)
Místo vydání
Rijeka
Kód UT WoS kapitoly
—