The use of artificial neural networks to predict the muscle behavior.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F13%3A00213798" target="_blank" >RIV/68407700:21460/13:00213798 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15510/13:33145030
Výsledek na webu
<a href="http://link.springer.com/article/10.2478%2Fs13531-012-0067-4" target="_blank" >http://link.springer.com/article/10.2478%2Fs13531-012-0067-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/s13531-012-0067-4" target="_blank" >10.2478/s13531-012-0067-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The use of artificial neural networks to predict the muscle behavior.
Popis výsledku v původním jazyce
The aim of this article is to introduce methods of prediction of muscle behavior of the lower extremities based on artificial neural networks, which can be used for medical purposes. Our work focuses on predicting muscletendon forces and moments during human gait with the use of angle-time diagram. A group of healthy children and children with cerebral palsy were measured using a Vicon MoCap system. The kinematic data was recorded and the OpenSim software system was used to identify the joint angles, muscle-tendon forces and joint muscle moment, which are presented graphically with time diagrams. The musculus gastrocnemius medialis that is often studied in the context of cerebral palsy have been chosen to study the method of prediction. The diagrams ofmean muscle-tendon force and mean moment are plotted and the data about the force-time and moment-time dependencies are used for training neural networks. The new way of prediction of muscle-tendon forces and moments based on neural netw
Název v anglickém jazyce
The use of artificial neural networks to predict the muscle behavior.
Popis výsledku anglicky
The aim of this article is to introduce methods of prediction of muscle behavior of the lower extremities based on artificial neural networks, which can be used for medical purposes. Our work focuses on predicting muscletendon forces and moments during human gait with the use of angle-time diagram. A group of healthy children and children with cerebral palsy were measured using a Vicon MoCap system. The kinematic data was recorded and the OpenSim software system was used to identify the joint angles, muscle-tendon forces and joint muscle moment, which are presented graphically with time diagrams. The musculus gastrocnemius medialis that is often studied in the context of cerebral palsy have been chosen to study the method of prediction. The diagrams ofmean muscle-tendon force and mean moment are plotted and the data about the force-time and moment-time dependencies are used for training neural networks. The new way of prediction of muscle-tendon forces and moments based on neural netw
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EI - Biotechnologie a bionika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/VG20102015002" target="_blank" >VG20102015002: Osobní bezpečnostní dohledový systém pro podporu výcviku a zásahu jednotek IZS</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Central European Journal of Engineering
ISSN
1896-1541
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
9
Strana od-do
410-418
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—