Classification of EEG graphoelements with supervised and unsupervised learning algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F14%3A00222998" target="_blank" >RIV/68407700:21460/14:00222998 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1388245713012789" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1388245713012789</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.clinph.2013.12.042" target="_blank" >10.1016/j.clinph.2013.12.042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of EEG graphoelements with supervised and unsupervised learning algorithms
Popis výsledku v původním jazyce
The electroencephalogram (EEG) provides markers of brain disturbances in the field of epilepsy. In short duration EEG data recordings, the epileptic graphoelements may not manifest. The visual analysis of lengthy signals is a tedious task. It is necessary to track the EEG activity on the computer screen and to detect the epileptiform graphoelements and the other pathological activity. The automation of the process is needed. We will compare the EEG wave classification both by supervised and unsupervisedlearning algorithms. The feasibility to detect the changes in the microstructure of epileptic activity will be verified. The procedure is based on multichannel adaptive segmentation, feature extraction and classification of graphoelements. To take intoaccount the non-stationary behavior of the signal, the features were extracted from segments detected by adaptive segmentation. The features included amplitude variance, parameters describing duration, number of segments, power in the fre
Název v anglickém jazyce
Classification of EEG graphoelements with supervised and unsupervised learning algorithms
Popis výsledku anglicky
The electroencephalogram (EEG) provides markers of brain disturbances in the field of epilepsy. In short duration EEG data recordings, the epileptic graphoelements may not manifest. The visual analysis of lengthy signals is a tedious task. It is necessary to track the EEG activity on the computer screen and to detect the epileptiform graphoelements and the other pathological activity. The automation of the process is needed. We will compare the EEG wave classification both by supervised and unsupervisedlearning algorithms. The feasibility to detect the changes in the microstructure of epileptic activity will be verified. The procedure is based on multichannel adaptive segmentation, feature extraction and classification of graphoelements. To take intoaccount the non-stationary behavior of the signal, the features were extracted from segments detected by adaptive segmentation. The features included amplitude variance, parameters describing duration, number of segments, power in the fre
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů